Химия и пластмассы

Угольная кислота какой электролит. Растворы электролитов

УЧЕБНАЯ КНИГА ПО ХИМИИ

ДЛЯ УЧИТЕЛЕЙ СРЕДНИХ ШКОЛ,
СТУДЕНТОВ ПЕДАГОГИЧЕСКИХ ВУЗОВ И ШКОЛЬНИКОВ 9–10 КЛАССОВ,
РЕШИВШИХ ПОСВЯТИТЬ СЕБЯ ХИМИИ И ЕСТЕСТВОЗНАНИЮ

УЧЕБНИКЗАДАЧНИКЛАБОРАТОРНЫЙ ПРАКТИКУМНАУЧНЫЕ РАССКАЗЫ ДЛЯ ЧТЕНИЯ

Продолжение. См. № 4–14, 16–28, 30–34, 37–44, 47, 48/2002;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25-26, 27-28, 29, 30, 31, 32, 35, 36, 37, 39, 41, 42/2003

Поэтому, против общего мнения, гидратация не должна пить восемь стаканов воды в день. Мы можем выпить десять, пятнадцать или даже двадцать стаканов воды в день, и у нас все равно не будет надлежащего увлажнения. Если мы не сможем держать воду в клетках, она будет проходить через тело, а не оставаться в клетках и увлажнять их. Отсутствие гидратации вызывает повреждение клеточной мембраны, точно так же, как пробитый карман, пытающийся удерживать монеты. Вода стекает из клеток, где она должна стоять и становится сточными водами.

Он содержит много отрицательных ионов водорода, которые захватываются клеточным кислородом, образующим метаболическую воду в клеточном энергогенерирующем процессе клеточного дыхания. Размер молекулы кластерной воды измеряется в Гц. Чем больше воды, тем меньше воды, тем легче организму ее поглощать!

§ 6.3. Сильные и слабые электролиты

Материал этого раздела частично вам знаком по ранее изученным школьным курсам химии и из предыдущего раздела. Кратко повторим, что вам известно, и познакомимся с новым материалом.

В предыдущем разделе мы обсуждали поведение в водных растворах некоторых солей и органических веществ, полностью распадающихся на ионы в водном растворе.
Имеется ряд простых, но несомненных доказательств того, что некоторые вещества в водных растворах распадаются на частицы. Так, водные растворы серной H 2 SO 4 , азотной HNO 3 , хлорной HClO 4 , хлороводородной (соляной) HCl, уксусной CH 3 COOH и других кислот имеют кислый вкус. В формулах кислот общей частицей является атом водорода, и можно предположить, что он (в виде иона) является причиной одинакового вкуса всех этих столь различных веществ.
Образующиеся при диссоциации в водном растворе ионы водорода придают раствору кислый вкус, поэтому такие вещества и названы кислотами. В природе только ионы водорода имеют кислый вкус. Они создают в водном растворе так называемую кислотную (кислую) среду.

Кандиновая ионизированная щелочная вода содержит избыток кислорода

Телу нужны обе формы кислорода. Это занимает около 3 минут. Люди с высокой щелочностью, такие как младенцы, могут жить дольше 3 минут. Хотя стало привычкой рассматривать наше сердце как действующее отдельно от мозга, оба они неразрывно связаны. Кислотно-щелочной характер - соотношение между ионами водорода и гидроксильными ионами в почвенном растворе, образованном процессами гидролиза и диссоциации с участием органических, минеральных или органо-минеральных соединений.

Запомните, когда вы говорите «хлороводород», то имеете в виду газообразное и кристаллическое состояние этого вещества, но для водного раствора следует говорить «раствор хлороводорода», «хлороводородная кислота» или использовать общепринятое название «соляная кислота», хотя состав вещества в любом состоянии выражается одной и той же формулой – НСl.

Более кислотная почва = чем меньше количество остатков оснований. Минеральные кислоты - не находятся в свободном состоянии почвенного раствора, а только в диссоциированной форме. Соли, которые гидролизуют кислоту, но накопленные количества довольно малы.

Фулвокислоты присутствуют в больших количествах в почвенном растворе. Соли, образованные со слабыми кислотами с сильными основаниями, выделяют сильные основания путем гидролиза. Адсорбент натрия и т.д. Соли, состоящие из сильных кислот и сильных оснований, не гидролизуются и, таким образом, не влияют на реакцию почвы.

Водные растворы гидроксидов лития (LiOH), натрия (NаОН), калия (КОН), бария (Ва(ОН) 2), кальция (Са(ОН) 2) и других металлов имеют одинаковый неприятный горько-мыльный вкус и вызывают на коже рук ощущение скольжения. По-видимому, за это свойство ответственны гидроксид-ионы ОН – , входящие в состав таких соединений.
Хлороводородная HCl, бромоводородная HBr и йодоводородная HI кислоты реагируют с цинком одинаково, несмотря на свой различный состав, т. к. в действительности с цинком реагирует не кислота:

Zn + 2НСl = ZnСl 2 + Н2,

а ионы водорода:

Zn + 2H + = Zn 2+ + Н 2 ,

и образуются газообразный водород и ионы цинка.
Смешивание некоторых растворов солей, например хлорида калия KCl и нитрата натрия NaNO 3 , не сопровождается заметным тепловым эффектом, хотя после выпаривания раствора образуется смесь кристаллов четырех веществ: исходных – хлорида калия и нитрата натрия – и новых – нитрата калия КNO 3 и хлорида натрия NaCl. Можно предположить, что в растворе две исходные соли полностью распадаются на ионы, которые при его выпаривании образуют четыре кристаллических вещества:

Сопоставляя эти сведения с электропроводностью водных растворов кислот, гидроксидов и солей и с рядом других положений, С.А.Аррениус в 1887 г. выдвинул гипотезу электролитической диссоциации, согласно которой молекулы кислот, гидроксидов и солей при растворении их в воде диссоциируют на ионы.
Изучение продуктов электролиза позволяет приписать ионам положительные или отрицательные заряды. Очевидно, если кислота, например азотная НNO 3 , диссоциирует, предположим, на два иона и при электролизе водного раствора на катоде (отрицательно заряженный электрод) выделяется водород, то, следовательно, в растворе имеются положительно заряженные ионы водорода Н + . Тогда уравнение диссоциации следует записать так:

НNO 3 = Н + + .

Электролитическая диссоциация – полный или частичный распад соединения при его растворении в воде на ионы в результате взаимодействия с молекулой воды (или другого растворителя).
Электролиты – кислоты, основания или соли, водные растворы которых проводят электрический ток в результате диссоциации.
Вещества, не диссоциирующие в водном растворе на ионы и растворы которых не проводят электрический ток, называются неэлектролитами .
Диссоциация электролитов количественно характеризуется степенью диссоциации – отношением числа распавшихся на ионы «молекул» (формульных единиц) к общему числу «молекул» растворенного вещества. Степень диссоциации обозначается греческой буквой . Например, если из каждых 100 «молекул» растворенного вещества 80 распадаются на ионы, то степень диссоциации растворенного вещества равна: = 80/100 = 0,8, или 80%.
По способности к диссоциации (или, как говорят, «по силе») электролиты разделяют на сильные , средние и слабые . По степени диссоциации к сильным электролитам относят те из них, для растворов которых > 30%, к слабым – < 3%, к средним – 3% 30%. Сила электролита – величина, зависящая от концентрации вещества, температуры, природы растворителя и др.
В случае водных растворов к сильным электролитам ( > 30%) относят перечисленные ниже группы соединений.
1 . Многие неорганические кислоты, например хлороводородная НCl, азотная HNO 3 , серная H 2 SО 4 в разбавленных растворах. Самая сильная неорганическая кислота – хлорная НСlО 4 .
Сила некислородных кислот возрастает в ряду однотипных соединений при переходе вниз по подгруппе кислотообразующих элементов:

HCl – HBr – HI.

Фтороводородная (плавиковая) кислота HF растворяет стекло, но это вовсе не говорит о ее силе. Эта кислота из бескислородных галогенсодержащих относится к кислотам средней силы из-за высокой энергии связи Н–F, способности молекул HF к объединению (ассоциации) благодаря сильным водородным связям, взаимодействия ионов F – с молекулами НF (водородные связи) с образованием ионов и других более сложных частиц. В результате концентрация ионов водорода в водном растворе этой кислоты оказывается значительно пониженной, поэтому фтороводородную кислоту считают средней силы.
Фтороводород реагирует с диоксидом кремния, входящим в состав стекла, по уравнению:

SiO 2 + 4HF = SiF 4 + 2H 2 O.

Фтороводородную кислоту нельзя хранить в стеклянных сосудах. Для этого используют сосуды из свинца, некоторых пластмасс и стекла, стенки которых покрыты изнутри толстым слоем парафина. Если для «травления» стекла использовать газообразный фтороводород, то поверхность стекла становится матовой, что используется для нанесения на стекло надписей и различных рисунков. «Травление» стекла водным раствором фтороводородной кислоты приводит к разъеданию поверхности стекла, которая остается прозрачной. В продаже обычно бывает 40%-й раствор плавиковой кислоты.

Сила однотипных кислородных кислот изменяется в противоположном направлении, например йодная кислота НIО 4 слабее хлорной кислоты НСlО 4 .
Если элемент образует несколько кислородных кислот, то наибольшей силой обладает кислота, в которой кислотообразующий элемент имеет самую высокую валентность. Так, в ряду кислот НСlО (хлорноватистая) – НСlО 2 (хлористая) – НСlО 3 (хлорноватая) – НСlО 4 (хлорная) последняя наиболее сильная.

Один объем воды растворяет около двух объемов хлора. Хлор (примерно половина его) взаимодействует с водой:

Cl 2 + H 2 O = HCl + HСlO.

Хлороводородная кислота является сильной, в ее водном растворе практически нет молекул HCl. Правильнее уравнение реакции записать так:

Cl 2 + H 2 O = H + + Cl – + HClO – 25 кДж/моль.

Образующийся раствор называют хлорной водой.
Хлорноватистая кислота – быстродействующий окислитель, поэтому ее применяют для отбеливания тканей.

2 . Гидроксиды элементов главных подгрупп I и II групп периодической системы: LiОН, NaОН, КОН, Са(ОН) 2 и др. При переходе вниз по подгруппе по мере усиления металлических свойств элемента сила гидроксидов возрастает. Растворимые гидроксиды главной подгруппы I группы элементов относят к щелочам.

Щелочами называют растворимые в воде основания. К ним относят также гидроксиды элементов главной подгруппы II группы (щелочно-земельные металлы) и гидроксид аммония (водный раствор аммиака). Иногда щелочами считают те гидроксиды, которые в водном растворе создают высокую концентрацию гидроксид-ионов. В устаревшей литературе вы можете встретить в числе щелочей карбонаты калия К 2 СО 3 (поташ) и натрия Na 2 CO 3 (сода), гидрокарбонат натрия NaHCO 3 (питьевая сода), буру Na 2 B 4 O 7 , гидросульфиды натрия NaHS и калия KHS и др.

Гидроксид кальция Са(ОН) 2 как сильный электролит диссоциирует в одну ступень:

Са(ОН) 2 = Са 2+ + 2ОН – .

3 . Почти все соли. Соль, если это сильный электролит, диссоциирует в одну ступень, например хлорид железа:

FeCl 3 = Fe 3+ + 3Cl – .

В случае водных растворов к слабым электролитам ( < 3%) относят перечисленные ниже соединения.

1 . Вода H 2 O – важнейший электролит.

2 . Некоторые неорганические и почти все органические кислоты: H 2 S (сероводородная), H 2 SO 3 (сернистая), H 2 CO 3 (угольная), HCN (циановодородная), Н 3 РО 4 (фосфорная, ортофосфорная), H 2 SiO 3 (кремниевая), H 3 BO 3 (борная, ортоборная), СН 3 СООН (уксусная) и др.
Заметим, что угольная кислота в формуле H 2 CO 3 не существует. При растворении углекислого газа СО 2 в воде образуется его гидрат СО 2 Н 2 О, который мы для удобства расчетов записываем формулой H 2 CO 3 , и уравнение реакции диссоциации выглядит так:

Диссоциация слабой угольной кислоты проходит в две ступени. Образующийся гидрокарбонат-ион также ведет себя как слабый электролит.
Точно так же ступенчато диссоциируют и другие многоосновные кислоты: Н 3 РО 4 (фосфорная), H 2 SiO 3 (кремниевая), H 3 BO 3 (борная). В водном растворе диссоциация практически проходит лишь по первой ступени. Как осуществить диссоциацию по последней ступени?
3 . Гидроксиды многих элементов, например Аl(OH) 3 , Cu(OH) 2 , Fe(OH) 2 , Fe(OH) 3 и др.
Все эти гидроксиды диссоциируют в водном растворе ступенчато, например гидроксид железа
Fe(OH) 3:

В водном растворе диссоциация проходит практически только по первой ступени. Как сместить равновесие в сторону образования ионов Fe 3+ ?
Осно"вные свойства гидроксидов одного и того же элемента усиливаются с уменьшением валентности элемента. Так, осно"вные свойства дигидроксида железа Fe(OH) 2 выражены сильнее, чем у тригидроксида Fe(OH) 3 . Это утверждение равносильно тому, что кислотные свойства Fe(OH) 3 проявляются сильнее, чем у Fe(OH) 2 .
4 . Гидроксид аммония NH 4 OH.
При растворении газообразного аммиака NH 3 в воде получается раствор, который очень слабо проводит электрический ток и имеет горько-мыльный вкус. Среда раствора осно"вная, или щелочная. Объясняется такое поведение аммиака следующим образом. При растворении аммиака в воде образуется гидрат аммиака NH 3 Н 2 О, которому условно мы приписываем формулу несуществующего гидроксида аммония NH 4 OH, считая, что это соединение диссоциирует с образованием иона аммония и гидроксид-иона ОН – :

NH 4 OH = + ОН – .

5 . Некоторые соли: хлорид цинка ZnCl 2 , тиоцианат железа Fe(NСS) 3 , цианид ртути Hg(CN) 2 и др. Эти соли диссоциируют ступенчато.

К электролитам средней силы некоторые относят фосфорную кислоту Н 3 РО 4 . Мы будем считать фосфорную кислоту слабым электролитом и записывать три ступени ее диссоциации. Серная кислота в концентрированных растворах ведет себя как электролит средней силы, а в очень концентрированных растворах – как слабый электролит. Мы далее будем считать серную кислоту сильным электролитом и записывать уравнение ее диссоциации в одну ступень.

Электролитическая диссоциация гидроксидов и солей

В водных растворах гидроксиды и соли проводят электрический ток в результате распада на заряженные частицы – ионы. Этот процесс носит название электролитическая диссоциация , а вещества, распадающиеся на ионы в водном растворе, называются электролитами.

Кислотами с точки зрения теории электролитической диссоциации называют вещества , распадающиеся в водных растворах на положительно заряженные ионы водорода (Н +) и отрицательно заряженные ионы кислотного остатка . Например, соляная кислота диссоциирует по уравнению

HCl↔H + + Cl - .

Положительно заряженные ионы называют катионами, а отрицательно заряженные – анионами. Таким образом, при диссоциации соляной кислоты образуется катион водорода и анион хлора (хлорид-ион ).

Число ионов водорода, образующихся при полной диссоциации молекулы кислоты, называется основностью кислоты .Так, соляная кислота является одноосновной , а серная кислота – двухосновной , т.к. при её диссоциации образуются два иона водорода:

Электролиты могут диссоциировать (распадаться на ионы) полностью, и такие вещества называют сильными электролитами. Электролиты, диссоциирующие частично, называют слабыми или средними. Серная, азотная и соляная кислоты относятся к сильным электролитам (сильным кислотам), а угольная кислота является слабой кислотой (слабым электролитом).

Основаниями с точки зрения теории электролитической диссоциации называют вещества, распадающиеся в водных растворах на положительно заряженные ионы металла и отрицательно заряженные гидроксид-ионы (ОН -) . Например, гидроксид натрия диссоциирует по уравнению

NaOH↔Na + + OH - .

Число гидроксид-ионов, образующихся при полной диссоциации молекулы основания, называется кислотностью основания. Так, гидроксид натрия является однокислотным , а гидроксид кальция – двухкислотным :

Ca(OH) 2 ↔ Ca 2+ + 2OH - .

Основания, как и все электролиты, могут быть сильными, слабыми и средней силы. Гидроксиды натрия, калия и кальция являются сильными основаниями, а гидроксид аммония – слабым основанием.

Амфотерные гидроксиды могут диссоциировать как кислоты и как основания:

Zn(OH) 2 ↔ Zn 2+ + 2OH - ;

Zn(OH) 2 ↔ 2H + + ZnO 2 2- .

В реакциях с кислотами амфотерные гидроксиды диссоциируют как основания, а в реакциях с основаниями – как кислоты.

Средние соли в водных растворах диссоциируют на катионы металла и анионы кислотного остатка:

Кислые соли могут диссоциировать частично:

или полностью с образованием кроме иона металла также катиона водорода:

Соответственно, основные соли также могут диссоциировать частично или полностью:

CaOHCl ↔ CaOH + + + Cl - ;

CaOHCl ↔ Ca 2+ + OH - + Cl - .

Большинство солей являются сильными электролитами.

1.11. Контрольные вопросы

1. Какие элементы 3-го периода ПСЭМ относятся к металлам? Ответ: натрий, магний, алюминий.

2. Какие элементы 4-й группы главной подгруппы относятся к неметаллам, полуметаллам, металлам?

Ответ: углерод, кремний – неметаллы, германий – полуметалл, олово и свинец – металлы.

3. Напишите уравнения реакций взаимодействия цинка (СО + 2), фосфора (СО + 5) и титана (СО + 4) с кислородом.

4. Напишите уравнения реакций взаимодействия кальция, фосфора (СО +3, и калия с хлором.

5. Напишите уравнения реакции взаимодействия оксида фосфора(V) и оксида магния с водой.

6. Напишите уравнение реакции взаимодействия оксида магния с оксидом углерода (IV).

7. Напишите уравнения реакций взаимодействия оксида алюминия с оксидом натрия и оксидом серы (VI).

8. Напишите уравнение реакции взаимодействия соляной кислоты с алюминием.

9. Напишите уравнение реакции взаимодействия азотной кислоты с оксидом алюминия.

10. Напишите уравнения реакций взаимодействия серной кислоты с гидроксидом калия и гидроксидом железа (II).

11. Напишите уравнение реакции взаимодействия гидроксида аммония с соляной кислотой.

12. Напишите уравнения реакций взаимодействия гидроксида натрия с оксидом серы (VI) и оксидом цинка (степень окисления цинка +2).

13. Напишите уравнение реакции взаимодействия сульфата железа (III) с едким натром, зная, что гидроксид железа (III) не растворим в воде.

14. Напишите уравнение реакции взаимодействия соляной кислоты с сульфитом натрия (Na 2 SO 3), зная, что сернистая кислота неустойчива и разлагается на воду и газообразный оксид серы (IV).

15. Напишите уравнение реакции взаимодействия сульфата натрия с хлоридом кальция, зная, что сульфат кальция не растворим в воде.

16. Напишите уравнения электролитической диссоциации азотной кислоты, гидроксида калия и хлорида магния.

17. Напишите уравнения электролитической диссоциации угольной кислоты, гидроксида магния и сульфата алюминия.

18. Напишите уравнения электролитической диссоциации фосфорной кислоты (H 3 PO 4) , гидроксида бария (Ba(OH) 2) и нитрата магния.