Обработка металлов

Что это такое оптоволокно? — Как подключить оптоволоконный интернет. Как устроен оптоволоконный кабель

Волоконно-оптический кабель – представляет собой стеклянный пучок нитей, который может передавать оптические сигналы. Еще совсем недавно такой кабель стали применять для абонентских линий, а уже сейчас – это основная среда для того, чтоб передавать цифровую информацию на больших расстояниях.

Зачем нужен кабель ОКГ?

Кабель ОКГ разработали для того, чтоб заменить громоздкие кабеля из меди. Они могут выпускаться в таких модификациях как – одномодовые (получили свое применение в телефонии) и многомодовые (широко применяются в сетях). Различия между ними состоит в том, что одномодовые волокна могут передавать сигналы с волнами одной длинны, а многомодовые – волны с разной длинной.

Производство

Ранее уже было сказано, что ВОК – представляет собой стеклянные волокна. Изначально одно волокно – это стержень из стекла, диаметр которой от пяти до восьми сантиметров. Далее такой стержень загружается в специальную машину, которая путем плавки и протягивания превращает его в волокно. После этого такое волокно покрывается оболочкой с внутренними силовыми компонентами.

Прокладывается ВОК практически так же как и медный, но разница состоит в хрупкости, т.е. если ВОК чрезмерно изгибать или натягивать – он ломается.

Безопасность

Для работы с волокно-оптическими кабелями необходимо ни в коем случае не смотреть на торец без специального оборудования, т.к. практически невидимый кусок волокна может, попав в глаза нанести им непоправимый ущерб.

Сращивание

ВОК сращивают либо механически (благодаря специальному устройству концы кабеля полируются, а гель заполняет микро-полости) либо с помощью плавления (волокна плавятся и становятся одним целым).

В основном сращивают волокна механически, т.к. для этого необходим простой набор инструментов, которые предлагают практически все производители, а полировкой может заняться любой рабочий службы поддержки. Если же сращивать волокна методам плавления, то необходимо дорогое оборудование, и не каждый монтажник сможет это сделать.

Ремонт кабеля

Конструкция ВОК изначально совершенна и имеет достаточно каналов в своем резерве, что дает гарантию работы сети с потерями, сведенными к минимуму, если кабель был поврежден. Но в тоже время, если повреждение произошло, то для ремонта потребуется сделать как минимум 2 дополнительных стыка, что может привести к потере мощности. Для того, чтоб этого не произошло, следует заранее включить в кабельную систему ремонтно-восстановительные работы. Конечно, это потребует лишних средств, но поможет сэкономить если возникли какие-либо неполадки в кабеле.

Волоконная оптика, как термин, это учение о распространении светового потока в оптическом волокне. Как продукция, волоконная оптика – это все то, что имеет в составе оптико-волоконный элемент.

Оптическое волокно – это изготовленная из кварцевого стекла тонкая жила, внутри которой течет световой луч, не покидая ее пределов. Сегодня существует оптоволокно с пластиковым сердечником, характеристики которого близки к натуральному кварцу. Смысл один – световой пучок отражается от стенок жилы и сохраняет свое информационное содержание вне зависимости от дальности передачи данных. Именно оптоволокно – самый лучший материал трансляции цифрового сигнала без затухания на дальние расстояния.

Появление и развитие оптоволокна

Световые сигналы, как метод обмена информацией, используются со времен появления огня. Идея информирования светом в новом времени впервые была апробирована Р.Гуком, который создал оптический телеграф, способный передавать информацию с помощью интервальной трансляции световых видимых сигналов, которые можно было увидеть на разных расстояниях невооруженным глазом или в подзорную трубу.

Далее появился другой сигнальный аппарат, который разработал Клоп Шапп. Здесь была трансформирована не только идея использования световых импульсов, но и введена систематизация подаваемых аппаратом сигналов. Теперь наборы знаков были унифицированы, а для их расшифровки был составлен словарь. Телеграфы нового типа быстро распространились не только на родине создателя во Франции, но и по всему континенту.

После этого был еще ряд доработок световых телеграфов, пока в 1960 году не появился лазер. Открытие принадлежит советским ученым, которые не только открыли новую форму светового луча, но и заложили базу для дальнейшего развития методик передачи данных светом.

Современные оптико-волоконные линии связи отличаются большей долговечностью, качеством, стойкостью к внешним воздействиям и разы превосходят медные кабельные сети передачи данных. Несмотря на более высокую стоимость, оптоволокно быстро и уже почти полностью заменило магистральные телекоммуникационные сети, обеспечив высокую скорость, чистоту и защиту сигнала от помех.

Материалы для оптоволокна

Как мы говорили выше, оптоволоконный кабель в сердечнике имеет кварцевый или полимерный стержень. Натуральный кварц обуславливает следующие характеристики кабельной продукции:

    Высокую оптическую проницаемость, что позволяет транслировать волны разных диапазонов.

    Малое затухание (потери сигнала), что является определяющим преимуществом для использования оптоволокна при построении магистралей большой протяженности.

    Температурную стойкость – оптико-волоконные кабели могут эксплуатироваться при экстремально высоких температурах.

    Большую гибкость – световоды на основе кварцевого оптоволокна могут иметь до 1000 микрометров в диаметре.

К минусам стоит отнести снижение пропускной способности в зонах с инфракрасным излучением: здесь сигнал затухает и использование дорогостоящих кабелей нецелесообразно.

Структура оптического кабеля

Вне зависимости от того, используется кварцевый или полимерный материал, структура кабеля одинакова. Ее образуют:

    Сердечник. Отвечает за распространение светового луча вдоль длины кабеля. Диаметр напрямую влияет на доступную площадь «попадания» светового луча, а значит – возможность подачи излучения для качественной доставки сигнала. Коэффициент преломления в сердечнике равен 1,48.

    Внутренняя оболочка . Отвечает за отражение светового луча и «корректировку» его траектории. Иными словами, не дает лучу покинуть пределы сердечника. Чем выше отражающая мощность оболочки, чем быстрее распространяется луч, передается сигнал и меньше его потери.

    Внешняя обшивка. Это буфер от внешних воздействий.Защищает внутренние компоненты кабеля от факторов среды, включая химические и механические воздействия. Предельно допустимая толщина обшивки не превышает 250 микрон.

Виды кабельной продукции на основе волоконной оптики

Сегодня существует два вида оптоволокна – одномодовое и многомодовое . Они различаются характеристиками и диаметром сердечника.

Диаметр сердечника одномодового волокна не превышает 8 микрон. Именно этот тип используется для трансляций на дальние расстояния, так как межмодовая дисперсия здесь практически равна нулю. Дело в том, что в столь малом диаметре можете перемещаться только один луч, поэтому возможность возникновения помех отсутствует.

Многомодовое волокно в диаметре может составлять 62,5 микрона. Здесь большая площадь приема, что позволяет двигаться нескольким лучам одновременно. При этом ввод лучей, как правило, происходит под разными углами, что повышает рассеивание из-за отражения этих лучей от поверхности оболочки. Соответственно, скорость и качество сигнала снижаются, поэтому подобные линии используются для локальных сетей и передачи сигнала между близлежащими строениями.

Многомодовое волокно бывает:

    Градиентным. Его особенность – разная плотность сердечника на разных его участках. Это позволяет управлять потоком, «разгоняя» луч на участках смены плотности, что увеличивает общую скорость передачи данных.

    Ступенчатым . Волокно с одинаковой плотностью сердечника на всем протяжении кабеля. Вероятность межмодовой дисперсии здесь выше, а скорость передачи – ниже.

Область применения

Оптическое волокно применяется в любых сферах, где требуется построение телекоммуникационных сетей и проведение технических изысканий с использованием оптических датчиков. Медицина, наука, добывающая промышленность, ЖКХ, ваш компьютер – все в той или иной мере использует технологии волоконной оптики.

И нтернет по оптоволоконному кабелю является последним изменением способа передачи данных по всему миру. Это намного быстрее, чем обычный кабель, быстрее, чем dial-up, и может переносить большие объемы данных, часто довольно легко достигая нескольких терабайтов передачи данных.

До оптоволокна: DSL и кабель

Цифровая абонентская линия (DSL) использовала существующие телефонные линии для передачи данных, которые обычно делались из меди. DSL медленный, старый, и по большей части был поэтапно отменен в пользу кабеля, но он остается в некоторых сельских районах. Средняя скорость для DSL составляет около 2 Мбит/с.

Кабельный интернет использует коаксиальный кабель, также изготовленный из меди, и, как правило, поставляется с такими же кабелями, которые используются для управления телевизионной сетью. Вот почему многие интернет-провайдеры предлагают в комплекте планы с подпиской на телевидение и доступом в Интернет. Средняя скорость для кабеля варьируется, но колеблется от 20 Мбит/с до 100 Мбит/с.

Оптоволокно

Волоконно-оптические кабели используют небольшие стеклянные волокна для передачи данных с использованием импульсов света. Свет распространяется так же, как и электричество через медный провод, но преимущество заключается в том, что волоконные кабели могут одновременно передавать сразу несколько сигналов. Они невероятно малы, поэтому их часто объединяют в более крупные кабели под названием «волоконно-оптические магистральные кабели», каждая из которых содержит несколько волоконных линий. Волоконные кабели содержат огромное количество данных, а средняя скорость, которую Вы увидите у себя дома, составляет около 1 Гбит/с (часто называемый «гигабитный интернет»).

Волоконные магистральные кабели образуют основную часть современного Интернета, и Вы увидите их преимущества, даже если у Вас нет «волоконного интернета». Это связано с тем, что точки обмена через Интернет (IXP) — коммутационные и маршрутизационные станции которые соединяют Ваш дом с остальной частью мира — используют волоконно-оптические магистральные линии для подключения к другим IXP.

Но когда придет время соединить все дома в городе с Вашим местным IXP (термин, который обычно называют «последней милей»), Ваш провайдер обычно будет использовать традиционный коаксиальный кабель для Вашего дома. Этот вариант становится узким местом для Вашей интернет-скорости. Когда кто-то говорит, что у них есть «оптоволоконный интернет», они имеют в виду, что подключение из их дома к IXP также использует волокно, исключая ограничение скорости медного кабеля.

Ограничения оптоволокна

Есть причина, по которой оптоволоконный интернет не является общедоступным. Волокно намного дороже для запуска и не оправдывает затраты, когда кабельные линии часто уже доступны. Для большинства людей скорость 20-100 Мбит/с, которую они получают на кабеле, достаточна, так как большинство загрузок из Интернета в любом случае не превысят этого соединения.

И хотя волокно, безусловно, лучше, чем медь, Вы не увидите увеличения фактической скорости загрузки из-за ограничений на сервере, с которого Вы загружаете. Такое приложение, как Steam, загружающее игру на 10 ГБ, похоже, потребуется всего несколько секунд на волоконно-оптическом соединении 1000 Мбит/с, но на самом деле Вы получите максимальную скорость 50 Мбит/с от серверов Steam.

Пока вы читаете эти строки, терабайты данных курсируют по всему миру, запертые в стеклянных нитях, протянутых по дну океана. Напоминает магию, но это всего лишь продвинутая технология. Оптическое волокно - технология, которой, человечество обязано естествоиспытателям XIX века. Наблюдая за лучами света на поверхности пруда, они предположили, что светом можно управлять, но претворить в жизнь ту гениальную идею удалось только совсем недавно с появлением сложнейших заводов и тщательным изучением оптических свойств материалов.

Запертый свет

По медной витой паре (как в вашем интернет-кабеле) во множестве движутся электроны. Ток предается по проводнику и несет с собой закодированную в последовательности импульсов - информацию. Нули и единицы - двоичный код, о котором слышали, пожалуй, все. Оптический проводник сигнала работает по тому же принципу, но с точки зрения физики, с ним все гораздо сложнее. Тут могла бы быть получасовая лекция о квантовой механике, и о том, как множество именитых физиков пришли в тупик, пытаясь понять природу света, но постараемся обойтись без пространных рассуждений.

Достаточно держать в уме то, что подобно электронам, фотоны или световые волны (на самом деле в нашем контексте это одно и то же), могут переносить закодированную информацию. Так, например, на аэродромах, в случаях отказа радиосвязи, передают сигналы самолетам при помощи направленных прожекторов. Но то примитивный метод, да и работает он лишь на расстоянии прямой видимости. В то же время, по оптоволокну свет передается на километры и далеко не по прямой траектории.


Чтобы добиться такого эффекта, можно было бы использовать зеркала. Собственно, с этого инженеры-испытатели и начали свои эксперименты. Они покрывали металлические трубы изнутри зеркальным слоем и направляли внутрь луч света. Но мало того, что подобные световоды стоили непомерно дорого. Свет многократно отражался от их стенок и постепенно затухал, терял силу и совершенно сходил на нет.

Зеркала не годились. Иначе и быть не могло. Даже самое дорогое зеркало не идеально. Его коэффициент отражения меньше 100% и после каждого падения на зеркальную поверхность световой луч теряет часть энергии, а в замкнутом объеме световода таких преломлений происходит неисчислимое множество.

Тут-то и пришло время вспомнить о пруде и тех давних исследованиях, что основывались на наблюдении за поведением света в воде. Представьте, как луч закатного солнца падает на поверхность воды, преодолевает границу и направляется вниз, к дну пруда.


Те из читателей, кто помнит школьный курс физики, наверняка уже догадываются, что свет изменит направление своего движения. Часть света пройдет под воду, чуть изменив угол своего движения, а другая незначительная часть света отразится обратно в небо, потому, как «угол падения равен углу отражения». Если долгое время наблюдать за этим явлением, однажды, можно заметить, что свет, отраженный от зеркала под водой, под определенным углом так и не сумеет вырваться наружу - отразится от границы воды и воздуха полностью, лучше, чем от всякого зеркала. Дело не в воде как таковой, а в сочетании двух сред с различными оптическими свойствами - неодинаковыми коэффициентами преломления. Для создания световой ловушки достаточно минимального их различия.

Гибкие световоды


Материалы не столь уж важны. В физических опытах для детей, демонстрирующих этот эффект, часто используют воду и прозрачную пластмассовую трубку. Больше чем на пару метров в таком световоде световой луч не передать, но смотрится это красиво. По той же причине светильники и прочие декоративные изделия часто имеют в своей конструкции световоды из пластмасс. Но когда речь заходит о передаче информации на многие километры, требуются особые, сверхчистые материалы, с минимумом примесей и оптическими свойствами, близкими к идеальным.


В 1934 году американец Норман Р. Френч запатентовал стеклянный световод, который должен был обеспечить телефонную связь, но он толком не работал. Потребовалась масса времени, чтобы найти материал, который бы отвечал высочайшим требованиям к чистоте и прозрачности, изобрести оптическое волокно из диоксида кремния - чистейшего кварцевого стекла. Чтобы создать в прозрачном кремнии разность коэффициентов преломления, прибегают к хитрости. Центр прозрачной болванки, которая превратится в провод, оставляют чистым, в то время, как внешние слои насыщают германием - он изменяет оптические характеристики стекла.


В таком случае, болванку обычно спекают из двух заранее приготовленных стеклянных трубок, вставленных одна в другую. Но можно поступить и наоборот, насытив сердцевину стекловолокна германием. Более технологичным и высококачественным стекловолокно получается, когда стеклянные трубки наполняют изнутри газом и ждут, пока германий сам осядет на стекло тончайшим слоем. Затем трубку разогревают и растягивают до метровой длины. При этом полость внутри закрывается сама.


Получившийся стержень имеет сердцевину с одним коэффициентом преломления и оболочку с другими оптическими параметрами. Он то и послужит для изготовления оптического волокна. Пока тяжелая заготовка толщиной в руку ничем не напоминает провод, но кварцевое стекло хорошо растягивается.


Подготовленную болванку поднимают на высоту десятиметровой башни, закрепляют на вершине и равномерно нагревают до пор, пока по консистенции она не будет напоминать нугу. Тогда из стеклянной болванки под собственным весом начинает тянуться тончайшая нить. По пути вниз она остывает и приобретает гибкость. Это может показаться странным, но сверхтонкое стекло прекрасно гнется.


Готовое оптическое волокно, непрерывно поступающее вниз, окунают в ванну с жидким пластиком, образующим защитный слой на поверхности кварца, а затем сматывают. Так продолжается до тех пор, пока заготовка на вершине башни не будет полностью переработана в единую нить из сотни-другой километров оптического волокна.


Из него, в свою очередь, будут сплетены кабели, содержащие от пары, до пары сотен отдельных стеклянных волокон, упрочняющие вставки, экранирующие слои и защитные оболочки.
  1. Осевой стержень.
  2. Оптическое волокно.
  3. Пластиковая защита оптических волокон.
  4. Пленка с гидрофобным гелем.
  5. Полиэтиленовая оболочка.
  6. Армирование.
  7. Внешняя полиэтиленовая оболочка.

Связь со скоростью света

Описанный процесс сложен, трудозатратен, требует постройки заводов и специального обучения от их персонала, и, тем не менее, игра стоит свеч. Ведь скорость света - это непреодолимый предел, максимальная скорость, с которой информация может распространяться в принципе. Соперничать с оптическим волокном в скорости передачи информации могут, разве что, линии прямой оптической связи, но никак не медные проводники, на какие бы ухищрения не шли их создатели. Сравнения демонстрируют превосходство оптического волокна над остальными средствами передачи информации лучше всего.


Домашний интернет на постсоветском пространстве, зачастую, проводят по двужильной витой паре с проводниками толщиной в один - два миллиметра. Максимумом для нее, оказывается показатель в 100 мегабит в секунду. Этого достаточно для пары компьютеров, но, когда в квартире оказываются умный телевизор, NAS, раздающий торренты, домашний сервер, несколько смартфонов и умных девайсов из мира интернета вещей, не хватит и восьмижильного провода. Ограничения канала связи становятся очевидны. Как правило, в виде артефактов и заикающихся киногероев на экране телевизора, или лагов в онлайн-играх. Оптоволокно толщиной 9 микрон обладает в 30 раз большей пропускной способностью, не говоря уже о том, что таких жил в проводе может быть несколько.

При этом оно компактнее и весит значительно меньше обычных проводов, что оказывается решающим преимуществом, при прокладке магистральных линий связи и планировании городских коммуникаций.


Оптические кабели соединяют континенты, города и датацентры. В России первая такая линия, появилась в Москве. Первый подводный оптический кабель пролег между Санкт-Петербургом и датским Аберслундом. Затем оптоволокно протянулось между предприятиями, государственными учреждениями и банками. В крупных городах получила распространение схема, при которой оптические линии связи доводят до отдельных многоквартирных домов, и, тем не менее, для рядового потребителя оптическое волокно все еще остается экзотикой. Нам бы было интересно узнать, как много наших читателей использует его дома, потому что, по большинству квартир по-прежнему тянется старая-добрая витая пара.


Оптическое волокно не только дорогое и сложное в производстве. Еще дороже оказывается его квалифицированное обслуживание. Тут не обойтись без синей изоленты. При монтаже волокна кварца необходимо специальным образом сращивать, а линии оптоволоконной связи комплектовать дополнительным оборудованием.

Несмотря на то, что разность коэффициентов преломления в сердцевине и оболочке волокна в теории создает идеальный световод, запущенный по кварцевому проводу свет все равно затухает из-за примесей, содержащихся в стекле. Увы, избавиться от них полностью практически невозможно. Десятка молекул воды на километр оптического волокна уже достаточно, чтобы внести в сигнал ошибки и снизить расстояние, на которое его можно передать.


С подобной проблемой сталкиваются инженеры-электрики и в случае с обычными проводами. Расстояние, на которое можно без проблем отправить сигнал по проводу они называют дистанцией регенерации.

Для стандартного телефонного кабеля она равняется километру, у экранированного кабеля - пяти. Оптоволоконная жила удерживает свет на расстоянии до нескольких сотен километров, но, в конце концов, сигнал все равно приходится усиливать, регенерировать. На классических линиях связи устанавливаются сравнительно дешевые и простые усилители. Для оптоволоконных – требуются сложные и высокотехничные агрегаты в которых используются редкоземельные металлы и инфракрасные лазеры.

В линию связи врезают небольшой участок специально подготовленного стекловолокна. Оно дополнительно насыщенно атомами эрбия, редкоземельного элемента используемого, помимо прочего, в атомной промышленности. Атомы эрбия в этом участке волокна находятся в возбужденном состоянии из-за дополнительной накачки светом. Проще говоря, их подсвечивают специально настроенным лазером. Сигнал, проходящий такую область кабеля, усиливается примерно в два раза, поскольку атомы эрбия в ответ на воздействие излучают свет той же волны, что и входящий сигнал, а значит, сохраняют закодированную в нем информацию. После усилителя оптический сигнал может пройти еще около ста километров, прежде чем процедуру потребуется повторить.


Такие системы требуют обученных специалистов для обслуживания и постоянного присмотра, так что экономическая выгода от прокладки индивидуальных оптических линий для конкретных абонентов остается сомнительной в большинстве стран мира. И все же, все мы используем стекловолокно для передачи сообщений. Весь современный интернет базируется на этой технологии и именно благодаря ей стали возможны интернет трансляции в сверхвысоком разрешении, видеостриминг, онлайн игры с минимальной задержкой, мгновенная связь с практически любой точкой планеты и даже мобильный интернет. Да, базовые станции сотовой связи также связывает стекловолокно.


Несмотря на то, что ученые ищут новые пути построения коммуникационных сетей, мы не получим ничего более практичного еще очень долго. Экспериментальные технологии позволяют поднять информационную емкость стекловолокна в два-три раза, все более толстые многожильные стеклянные кабели ложатся на морское дно между континентами, однако принципиальные ограничения, накладываемые скоростью света, запертого в кварцевой жиле, преодолеть вряд ли удастся. Выходом видится отказ от кварца и связанных с ним ограничений, передача информации с помощью лазеров, но она возможна только по прямой. Следовательно, передатчики придется разместить в космосе или хотя бы в верхних слоях атмосферы. Подобные эксперименты в последние годы привлекли внимание крупнейших корпораций, но это уже совсем другая история.