Энергетика и электротехника

Что такое SMO и SMM. Продвижение в социальных сетях

ТЕОРИЯ МАССОВОГО ОБСЛУЖИВАНИЯ

Введение

Теория массового обслуживания является важным разделом системного анализа и исследования операций. Она богата разнообразными приложениями: от задач. связанных с эксплуатацией телефонных сетей, до научной организации производства. Эта теория используется там, где имеются вызовы и клиенты, сигналы и изделия массового производства, а также там, где изделия обслуживаются, обрабатываются, передаются.

Идеи и методы теории массового обслуживания (ТМО) получают всё большее распространение. Многие задачи техники, экономики, военного дела, естествознания могут быть поставлены и решены в терминах ТМО.

Своим возникновением ТМО обязана, в первую очередь, прикладным вопросам телефонии, в которых из-за большого числа независимых или слабо зависимых источников (абонентов телефонных станций) потоки заявок (вызовов) имеют четко выраженный случайный характер. Случайные колебания (флуктуации) около некоторого среднего являются в данном случае не результатом какого-то отклонения от нормы, а закономерностью, свойственной всему процессу. С другой стороны, стабильность работы телефонных станций, возможность получения хороших статистических данных создали предпосылки для выявления основных характеристик, свойственных данному процессу обслуживания.

Впервые на это обратил внимание и провёл исследования датчанин А.К. Эрланг. Основные его работы в данной области относятся к 1908 - 1921 годам. С этого времени, интерес к проблемам, выдвинутым Эрлангом, необычайно возрос. В 1927 - 1928 годах появляются работы Молина и Фрайя, позже в 1930 - 1932 годах - интересные работы Поллачека, А.Н. Колмогорова, А.Я. Хинчина.

Нужно сказать, что первые задачи ТМО были достаточно простыми и допускали получение окончательных аналитических зависимостей. О, развитие шло как по линии увеличения сферы приложения ТМО, так и по линии усложнения стоящих перед ней задач. Оказалось, что задачи типа телефонных, возникают в самых разнообразных направлениях исследований: в естествознании. в технике, на транспорте, в военном деле, в организации производства и т.д.

23. Системы массового обслуживания

Во многих областях практической деятельности человека мы сталкиваемся с необходимостью пребывания в состоянии ожидания. Подобные ситуации возникают в очередях в билетных кассах, в крупных аэропор­тах, при ожидании обслуживающим персоналом самолетов разрешения на взлет или посадку, на телефонных станциях в ожидании освобождения линии абонента, в ремонтных цехах в ожидании ремонта станков и обо­рудования, на складах снабженческо-сбытовых организаций в ожидании разгрузки или погрузки транспортных средств. Во всех перечисленных случаях имеем дело с массовостью и обслуживанием. Изучением таких ситуаций занимается теория массового обслуживания.

Теория массового обслуживания – область прикладной математики, занимающаяся анализом процессов в системах производства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и передачи информации; автоматических линиях производства и др.

Предметом теории массового обслуживания является установление зависимостей между характером потока заявок, числом каналов обслуживания, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами.

23.1. Понятие смо

В теории систем массового обслуживания (СМО) обслуживаемый объект называют требованием. В общем случае под требованием обычно понимают запрос на удовлетворение некоторой потребности, например, разговор с абонентом, посадка самолета, покупка билета, получение материалов на складе.

Средства, обслуживающие требования, называютсяобслуживающими устройствами иликаналами обслуживания . Например, к ним относятся каналы телефонной связи, посадочные полосы, мастера-ремонтники, би­летные кассиры, погрузочно-разгрузочные точки на базах и складах.

Совокупность однотипных обслуживающих устройств называется системой массового обслуживания . Такими системами могут быть телефонные стан­ции, аэродромы, билетные кассы, ремонтные мастерские, склады и базы снабженческо-сбытовых организаций и т.д.

Основной задачей теории СМО является изучение режима функциони­рования обслуживающей системы и исследование явлений, возникающих в процессе обслуживания. Так, одной из характеристик обслуживающей системы является время пребывания требования в очереди. Очевидно, что это время можно сократить за счет увеличения количества обслужи­вающих устройств. Однако каждое дополнительное устройство требует определенных материальных затрат, при этом увеличивается время без­действия обслуживающего устройства из-за отсутствия требований на обслуживание, что также является негативным явлением. Следовательно, в теории СМО возникают задачи оптимизации: каким образом достичь оп­ределенного уровня обслуживания (максимального сокращения очереди или потерь требований) при минимальных затратах, связанных с просто­ем обслуживающих устройств.

Источник. Источник определяется как устройство или множество, из которого требования поступают в систему для обслуживания. Источник называют бесконечным или конечным в зависимости от того, бесконечное или конечное число требований содержится в нем. Будем всегда предполагать, что источник, генерирующий требования, неисчерпаем. Например, хотя абонентов некоторого телефонного узла конечное число, предполагаем, что они образують бесконечный источник.

Входящий поток. Требования, поступающие из источника на обслуживание, образуют входящий поток. Само требование можно рассматривать как запрос на удовлетворение какой-то потребности. Примеров входящих потоков можно привести множество. Это - поток информации, поступающей на обработку в ЭВМ; поток заявок на АТС; поток клиентов, приходящих в ателье, и больных в поликлинику, поток прибывающих в порт судов; налетающие на объект удара самолеты и ракеты противника и т. д.

Обслуживающая система. Под обслуживающей системой понимают множество технических средств или производственного персонала (различного рода установки, приборы, устройства, тоннели, взлетно-посадочные полосы, линии связи, продавцы, бригады рабочих или служащих, кассиры и т. д.), выполняющих функции обслуживания. Все перечисленное выше, как уже говорилось, объединяется одним названием «канал обслуживания» (обслуживающий прибор). Состав системы определяется количеством каналов (приборов, линий). По количеству каналов системы можно подразделить на одноканальные и многоканальные.

Выходящий поток. Выходящий поток - это поток требований, покидающих систему после обслуживания. Сюда могут входить и требования, которые покинули систему, не пройдя обслуживания.

Входящий поток, функционирование обслуживающей системы как результат обслуживания, выходящий поток подлежат количественному описанию. Для того чтобы проводить математические исследование процесса массового обслуживания, необходимо полно определить систему обслуживания. Обычно это означает:

- задание входящего потока. Здесь имеются в виду как средняя интенсивность поступления требований, так и статистическая модель их поступления (т. е. закон распределения моментов поступления требований в систему);

- задание механизма обслуживания. Это означает указание того, когда обслуживание допустимо, сколько требований может обслуживаться одновременно и как долго длится обслуживание. Последнее свойство обычно характеризуют статистическим распределением длительности обслуживания (закон распределения времени обслуживания);

- задание дисциплины обслуживания. Это означает указание способа, по которому происходит отбор одного требования из очереди (если она есть) на обслуживание. В простейшем варианте дисциплина обслуживания заключается в обслуживании требований в порядке их поступления (справедливый принцип), однако существует и много других возможностей.

Задание системы предполагает также известное описание взаимодействия между отдельными ее частями.

Когда система достаточно полно определена, появляется основание для построения математической модели. Если математическая модель более или менее адекватно отображает реальную систему, то она позволяет получить основные характеристики функционирования системы. Разумеется, модель значительно упрощает практическую ситуацию, но это не умаляет математических методов теории массового обслуживания и положение дел не отличается от положения дел в других областях прикладной математики.

Рассмотренный в предыдущей лекции марковский случайный процесс с дискретными состояниями и непрерывным временем имеет место в системах массового обслуживания (СМО).

Системы массового обслуживания – это такие системы, в которые в случайные моменты времени поступают заявки на обслуживание, при этом поступившие заявки обслуживаются с помощью имеющихся в распоряжении системы каналов обслуживания.

Примерами систем массового обслуживания могут служить:

  • расчетно-кассовые узлы в банках, на предприятиях;
  • персональные компьютеры, обслуживающие поступающие заявки или требования на решение тех или иных задач;
  • станции технического обслуживания автомобилей; АЗС;
  • аудиторские фирмы;
  • отделы налоговых инспекций, занимающиеся приёмкой и проверкой текущей отчетности предприятий;
  • телефонные станции и т. д.

Узлы

Требования

Больница

Санитары

Пациенты

Производство

Аэропорт

Выходы на взлетно-посадочные полосы

Пункты регистрации

Пассажиры

Рассмотрим схему работы СМО (рис. 1). Система состоит из генератора заявок, диспетчера и узла обслуживания, узла учета отказов (терминатора, уничтожителя заявок). Узел обслуживания в общем случае может иметь несколько каналов обслуживания.

Рис. 1
  1. Генератор заявок – объект, порождающий заявки: улица, цех с установленными агрегатами. На вход поступает поток заявок (поток покупателей в магазин, поток сломавшихся агрегатов (машин, станков) на ремонт, поток посетителей в гардероб, поток машин на АЗС и т. д.).
  2. Диспетчер – человек или устройство, которое знает, что делать с заявкой. Узел, регулирующий и направляющий заявки к каналам обслуживания. Диспетчер:
  • принимает заявки;
  • формирует очередь, если все каналы заняты;
  • направляет их к каналам обслуживания, если есть свободные;
  • дает заявкам отказ (по различным причинам);
  • принимает информацию от узла обслуживания о свободных каналах;
  • следит за временем работы системы.
  1. Очередь – накопитель заявок. Очередь может отсутствовать.
  2. Узел обслуживания состоит из конечного числа каналов обслуживания. Каждый канал имеет 3 состояния: свободен, занят, не работает. Если все каналы заняты, то можно придумать стратегию, кому передавать заявку.
  3. Отказ от обслуживания наступает, если все каналы заняты (некоторые в том числе могут не работать).

Кроме этих основных элементов в СМО в некоторых источниках выделяются также следующие составляющие:

терминатор – уничтожитель трансактов;

склад – накопитель ресурсов и готовой продукции;

счет бухгалтерского учета – для выполнения операций типа «проводка»;

менеджер – распорядитель ресурсов;

Классификация СМО

Первое деление (по наличию очередей):

  • СМО с отказами;
  • СМО с очередью.

В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем не обслуживается.

В СМО с очередью заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь и ожидает возможности быть обслуженной.

СМО с очередями подразделяются на разные виды в зависимости от того, как организована очередь, – ограничена или не ограничена . Ограничения могут касаться как длины очереди, так и времени ожидания, «дисциплины обслуживания».

Итак, например, рассматриваются следующие СМО:

  • СМО с нетерпеливыми заявками (длина очереди и время обслуживания ограничено);
  • СМО с обслуживанием с приоритетом, т. е. некоторые заявки обслуживаются вне очереди и т. д.

Типы ограничения очереди могут быть комбинированными.

Другая классификация делит СМО по источнику заявок. Порождать заявки (требования) может сама система или некая внешняя среда, существующая независимо от системы.

Естественно, поток заявок, порожденный самой системой, будет зависеть от системы и ее состояния.

Кроме этого СМО делятся на открытые СМО и замкнутые СМО.

В открытой СМО характеристики потока заявок не зависят от того, в каком состоянии сама СМО (сколько каналов занято). В замкнутой СМО – зависят. Например, если один рабочий обслуживает группу станков, время от времени требующих наладки, то интенсивность потока «требований» со стороны станков зависит от того, сколько их уже исправно и ждет наладки.

Пример замкнутой системы: выдача кассиром зарплаты на предприятии.

По количеству каналов СМО делятся на:

  • одноканальные;
  • многоканальные.

Характеристики системы массового обслуживания

Основными характеристиками системы массового обслуживания любого вида являются:

  • входной поток поступающих требований или заявок на обслуживание;
  • дисциплина очереди;
  • механизм обслуживания.

Входной поток требований

Для описания входного потока требуется задать вероятностный закон, определяющий последовательность моментов поступления требований на обслуживание, и указать количество таких требований в каждом очередном поступлении. При этом, как правило, оперируют понятием «вероятностное распределение моментов поступления требований». Здесь могут поступать как единичные, так и групповые требования (количество таких требований в каждом очередном поступлении ). В последнем случае обычно речь идет о системе обслуживания с параллельно-групповым обслуживанием.

А i – время поступления между требованиями – независимые одинаково распределенные случайные величины;

E(A) – среднее (МО) время поступления;

λ=1/E(A) – интенсивность поступления требований;

Характеристики входного потока:

  1. Вероятностный закон, определяющий последовательность моментов поступления требований на обслуживание.
  2. Количество требований в каждом очередном поступлении для групповых потоков.

Дисциплина очереди

Очередь – совокупность требований, ожидающих обслуживания.

Очередь имеет имя.

Дисциплина очереди определяет принцип, в соответствии с которым поступающие на вход обслуживающей системы требования подключаются из очереди к процедуре обслуживания. Чаще всего используются дисциплины очереди, определяемые следующими правилами:

  • первым пришел – первый обслуживаешься;

first in first out (FIFO)

самый распространенный тип очереди.

Какая структура данных подойдет для описания такой очереди? Массив плох (ограничен). Можно использовать структуру типа СПИСОК.

Список имеет начало и конец. Список состоит из записей. Запись – это ячейка списка. Заявка поступает в конец списка, а выбирается на обслуживание из начала списка. Запись состоит из характеристики заявки и ссылки (указатель, за кем стоит). Кроме этого, если очередь с ограничением на время ожидания, то еще должно быть указано предельное время ожидания.

Вы как программисты должны уметь делать списки двусторонние, односторонние.

Действия со списком:

  • вставить в хвост;
  • взять из начала;
  • удалить из списка по истечении времени ожидания.
  • пришел последним - обслуживаешься первым LIFO (обойма для патронов, тупик на железнодорожной станции, зашел в набитый вагон).

Структура, известная как СТЕК. Может быть описан структурой массив или список;

  • случайный отбор заявок;
  • отбор заявок по критерию приоритетности.

Каждая заявка характеризуется помимо прочего уровнем приоритета и при поступлении помещается не в хвост очереди, а в конец своей приоритетной группы. Диспетчер осуществляет сортировку по приоритету.

Характеристики очереди

  • ограничение времени ожидания момента наступления обслуживания (имеет место очередь с ограниченным временем ожидания обслуживания, что ассоциируется с понятием «допустимая длина очереди»);
  • длина очереди.

Механизм обслуживания

Механизм обслуживания определяется характеристиками самой процедуры обслуживания и структурой обслуживающей системы. К характеристикам процедуры обслуживания относятся:

  • количество каналов обслуживания (N );
  • продолжительность процедуры обслуживания (вероятностное распределение времени обслуживания требований);
  • количество требований, удовлетворяемых в результате выполнения каждой такой процедуры (для групповых заявок);
  • вероятность выхода из строя обслуживающего канала;
  • структура обслуживающей системы.

Для аналитического описания характеристик процедуры обслуживания оперируют понятием «вероятностное распределение времени обслуживания требований».

S i – время обслуживания i -го требования;

E(S) – среднее время обслуживания;

μ=1/E(S) – скорость обслуживания требований.

Следует отметить, что время обслуживания заявки зависит от характера самой заявки или требований клиента и от состояния и возможностей обслуживающей системы. В ряде случаев приходится также учитывать вероятность выхода из строя обслуживающего канала по истечении некоторого ограниченного интервала времени. Эту характеристику можно моделировать как поток отказов, поступающий в СМО и имеющий приоритет перед всеми другими заявками.

Коэффициент использования СМО

N ·μ – скорость обслуживания в системе, когда заняты все устройства обслуживания.

ρ=λ/(N μ) – называется коэффициентом использования СМО , показывает, насколько задействованы ресурсы системы.

Структура обслуживающей системы

Структура обслуживающей системы определяется количеством и взаимным расположением каналов обслуживания (механизмов, приборов и т. п.). Прежде всего следует подчеркнуть, что система обслуживания может иметь не один канал обслуживания, а несколько; система такого рода способна обслуживать одновременно несколько требований. В этом случае все каналы обслуживания предлагают одни и те же услуги, и, следовательно, можно утверждать, что имеет место параллельное обслуживани .

Пример. Кассы в магазине.

Система обслуживания может состоять из нескольких разнотипных каналов обслуживания, через которые должно пройти каждое обслуживаемое требование, т. е. в обслуживающей системе процедуры обслуживания требований реализуются последовательно . Механизм обслуживания определяет характеристики выходящего (обслуженного) потока требований.

Пример. Медицинская комиссия.

Комбинированное обслуживание – обслуживание вкладов в сберкассе: сначала контролер, потом кассир. Как правило, 2 контролера на одного кассира.

Итак, функциональные возможности любой системы массового обслуживания определяются следующими основными факторами :

  • вероятностным распределением моментов поступлений заявок на обслуживание (единичных или групповых);
  • мощностью источника требований;
  • вероятностным распределением времени продолжительности обслуживания;
  • конфигурацией обслуживающей системы (параллельное, последовательное или параллельно-последовательное обслуживание);
  • количеством и производительностью обслуживающих каналов;
  • дисциплиной очереди.

Основные критерии эффективности функционирования СМО

В качестве основных критериев эффективности функционирования систем массового обслуживания в зависимости от характера решаемой задачи могут выступать:

  • вероятность немедленного обслуживания поступившей заявки (Р обсл =К обс /К пост);
  • вероятность отказа в обслуживании поступившей заявки (P отк =К отк /К пост);

Очевидно, что Р обсл + P отк =1.

Потоки, задержки, обслуживание. Формула Поллачека–Хинчина

Задержка – один из критериев обслуживания СМО, время проведенное заявкой в ожидании обслуживания.

D i – задержка в очереди требования i ;

W i =D i +S i – время нахождения в системе требования i .

(с вероятностью 1) – установившаяся средняя задержка требования в очереди;

(с вероятностью 1) – установившееся среднее время нахождения требования в СМО (waiting).

Q(t) – число требований в очереди в момент времени t;

L(t) число требований в системе в момент времени t (Q(t) плюс число требований, которые находятся на обслуживании в момент времени t.

Тогда показатели (если существуют)

(с вероятностью 1) – установившееся среднее по времени число требований в очереди;

(с вероятностью 1) – установившееся среднее по времени число требований в системе.

Заметим, что ρ<1 – обязательное условие существования d, w, Q и L в системе массового обслуживания.

Если вспомнить, что ρ= λ/(N μ), то видно, что если интенсивность поступления заявок больше, чем N μ, то ρ>1 и естественно, что система не сможет справиться с таким потоком заявок, а следовательно, нельзя говорить о величинах d, w, Q и L.

К наиболее общим и нужным результатам для систем массового обслуживания относятся уравнения сохранения

Следует обратить внимание, что упомянутые выше критерии оценки работы системы могут быть аналитически вычислены для систем массового обслуживания M/M/N (N >1), т. е. систем с Марковскими потоками заявок и обслуживания. Для М/G/ l при любом распределении G и для некоторых других систем. Вообще распределение времени между поступлениями, распределение времени обслуживания или обеих этих величин должно быть экспоненциальным (или разновидностью экспоненциального распределения Эрланга k-го порядка), чтобы аналитическое решение стало возможным.

Кроме этого можно также говорить о таких характеристиках, как:

Еще один интересный (и наглядный) пример аналитического решения вычисление установившейся средней задержки в очереди для системы массового обслуживания M/G/ 1 по формуле:

.

В России эта формула известна как формула ПоллачекаХинчина, за рубежом эта формула связывается с именем Росса (Ross).

Таким образом, если E(S) имеет большее значение, тогда перегрузка (в данном случае измеряемая как d ) будет большей; чего и следовало ожидать. По формуле можно обнаружить и менее очевидный факт: перегрузка также увеличивается, когда изменчивость распределения времени обслуживания возрастает, даже если среднее время обслуживания остается прежним. Интуитивно это можно объяснить так: дисперсия случайной величины времени обслуживания может принять большое значение (поскольку она должна быть положительной), т. е. единственное устройство обслуживания будет занято длительное время, что приведет к увеличению очереди.

Предметом теории массового обслуживания является установление зависимости между факторами, определяющими функциональные возможности системы массового обслуживания, и эффективностью ее функционирования. В большинстве случаев все параметры, описывающие системы массового обслуживания, являются случайными величинами или функциями, поэтому эти системы относятся к стохастическим системам.

Случайный характер потока заявок (требований), а также, в общем случае, и длительности обслуживания приводит к тому, что в системе массового обслуживания происходит случайный процесс. По характеру случайного процесса , происходящего в системе массового обслуживания (СМО), различают системы марковские и немарковские . В марковских системах входящий поток требований и выходящий поток обслуженных требований (заявок) являются пуассоновскими. Пуассоновские потоки позволяют легко описать и построить математическую модель системы массового обслуживания. Данные модели имеют достаточно простые решения, поэтому большинство известных приложений теории массового обслуживания используют марковскую схему. В случае немарковских процессов задачи исследования систем массового обслуживания значительно усложняются и требуют применения статистического моделирования, численных методов с использованием ЭВМ.

СМО с английского языка переводится как социальная медиа оптимизация. Она преследует задачу привлечения и удержания посетителей в социальных сетях. Также СМО направлено на работу по модернизации сайта.

СМО является внутренним продвижением, а CММ – внешним.

СМО оптимизирует лишь внутреннюю составляющую, ее не касается продвижение сайта в социальных сетях.

К оптимизации и продвижению своего сайта стремится каждый перспективный предприниматель. Но наряду с оптимизацией в поисковых системах есть еще и социальная оптимизация. Это СМО и СММ. Социальная оптимизация может в разы повысить посещаемость целевой аудитории. Потому не стоит ограничиваться лишь раскруткой своего сайта. СМО и СММ немного отличаются по процедуре.

Если раскрутка сайта направлена на алгоритмы роботов, то в СМО и CММ работают над оптимизацией аудитории.

Составляющие внутренней оптимизации СМО

При СМО все работы можно проделывать на сайте без вложения денежных средств. К внутренней работе по оптимизации относятся технические составляющие и аудит сайта, работа по наполнению и изменения содержимого сайта, работа над внешним видом, перелинковка, установкой кнопок, карты сайта, комментарии с социальных сетей, формирование блоков.

К аудиту относится анализ слабых сторон сайта и их исправления. Пересматривается дизайн, оптимизация вводных слов для легкости поиска, конкурентоспособности. При техническом аудите содержимое проверяется на грамотность, работоспособность ссылок, скорость загрузки. Также при аудите проверяется множество других параметров, и все это направленно на эффективную работу странички.

Не секрет, что содержимое сайта постоянно нужно обновлять, изменять, привносить новшества. Как правило, после разработки полноценного сайта, изменение содержимого является непрерывным процессом. Очень важны грамотные и последовательные статьи. От этого во многом зависит и поведенческая реакция систем поисковиков.

Также большую роль играет внешний вид сайта, его дизайн. Он должен быть красивым, не перегруженным аляпистыми цветами, отличаться от конкурентных сайтов, быть правильно расположенным. Визуальное восприятие также привлекает посетителей. Если внешний вид красивый и добротный, то это производит положительное впечатление о владельце сайта, так как производит эстетическое удовольствие. Еще очень важно, чтобы информация была расположена понятно и логично, чтобы можно было быстро найти нужную информацию.

Перелинковка сайта влияет на навигацию. Сайт становится более понятным для систем поисковиков и пользователей.

Хорошо установить карту сайта, на которой размещены ссылки на все страницы. Лучше ее создать отдельной страницей. Это улучшит навигацию и оперативность пользования.

На сайте нужно дать место комментариев с социальных сетей. Зарегистрированные пользователи в социальных сетях смогут комментировать статьи и другие текстовые приложения вашего сайта. Эти комментарии отображаются в соцсетях, что послужит вам рекламой.

Еще одной полезной вещью является формирование блоков. На страницу сайта с краю можно расположить колонку (сайдбар) со свежими и интересными статьями. Это будет привлекать читателей, так как люди любят быть в курсе событий. Возможно, это будет хорошим стимулом посетить сайт не один раз.

P.S. Если вы не хотите вникать во все детали и хитрости продвижения сайта, то рекомендуем доверить это дело профессионалам. Продвижением сайта в интернете на профессиональном уровне занимается компания JoomStudio.com.ua. За раскруткой сайта рекомендуем обращаться именно к ним.

В данном разделе рассматриваются СМО, в которых имеется как входной поток, так и поток обслуженных клиентов. Исследуются такие структуры, в которых параллельно функционируют с узлов (приборов), так что одновременно могут обслуживаться сразу с клиентов. При этом все обслуживающие приборы с точки зрения быстродействия предполагаются эквивалентными. Схематически такая обслуживающая система изображена на рис 1. заметим, что в любой (произвольно выбранный момент) времени всех находящихся в системе клиентов следует разделить на тех, кто находится в очереди и, следовательно, ждет, когда его начнут обслуживать, и тех, кто уже обслуживается.

Рисунок 1

Обозначения, которые представляют наиболее подходящими для СМО с параллельно "включенными" приборами, давно уже унифицированы и имеют следующую структуру:

(a/b/c): (d/e/f),

где символы a, b, c, d, e и f ассоциированны с конкретными наиболее существенными элементами модельного представления процессов массового обслуживания и интерпретируются следующим образом:

а- распределение моментов поступлений заявок на обслуживание;

b- распределение времени обслуживания (или выбытий обслуженных клиентов)

с - число параллельно функционирующих узлов обслуживания (с=1, 2…);

d- дисциплина очереди;

е - максимальное число допускаемых в систему требований (число требований в очереди+число требований, принятых на обслуживание);

f- емкость источника, генерирующего заявки на обслуживание.

Для конкретизации a и b приняты следующие стандартные обозначения:

М- пуассоновское распределение моментов поступления заявок на обслуживание или выбытый из системы обслуживанных клиентов (или экспоненциальное распределение интервалов времени между моментами последовательных поступлений или продолжительностей обслуживания клиентов);

D- фиксированный (детерминированный) интервал времени между моментами последовательных поступлений в систему заявок на обслуживание или детерминированная (фиксированная) продолжительность обслуживания;

Ek- распределение Эрланга или гамма-распределение интервалов времени между моментами последовательных поступлений требований в обслуживающую систему или продолжительностей обслуживания (при этом под k понимается параметр распределения);

GI- распределение произвольного вида моментов поступления в систему заявок на обслуживание (или интервалов времени между последовательными поступлениями требований);

G- распределение произвольного вида моментов выбытия из системы обслуженных клиентов (или продолжительностей обслуживания).

Для иллюстрации рассмотрим структуру (M/D/10):(GD/N/). В соответствии с принятыми обозначениями здесь речь идет о СМО с пуассоновским входным потоком, фиксированным временем обслуживания и десятью параллельно функционирующими узлами обслуживания. Дисциплина очереди не регламентирована, что подчеркивается парой символов GD. Кроме того, независимо от того, сколько требований поступает на вход обслуживающей системы, данная система (очередь+обслуживаемые клиенты) не может вместить более N требований (клиентов), т.е. клиенты, не попавшие в блок ожидания, вынуждены обслуживаться в другом месте. Наконец, источник, порождающий заявки на обслуживание, имеет неограниченную (бесконечно большую) емкость.

Конечная цель анализа систем и процессов массового обслуживания заключается в разработке критериев (или показателей) эффективности функционирования СМО. В этой связи важно сразу же подчеркнуть одно важное обстоятельство: поскольку процесс массового обслуживания протекает во времени, то нас будет интересовать только стационарный процесс.

При выполнении условий стационарности нас будут интересовать следующие операционные характеристики СМО:

Pn- вероятность того, что в системе находится n клиентов (заявок на обслуживание);

Ls- среднее число находящихся в системе клиентов (заявок на обслуживание);

Lq- среднее число клиентов очереди на обслуживание;

Ws - средняя продолжительность пребывания клиента (заявки на обслуживание) в системе;

Wq - средняя продолжительность пребывания клиента (заявки на обслуживание) в очереди.

По определению

Между Ls и Ws (как и между Lq и Wq) существует строгая взаимосвязь, так что, зная числовые значения одной из этих величин, можно легко найти значение другой величины. В частности, если частота поступлений в систему заявок на обслуживание равняется (интенсивность поступления требований), то мы имеем

Приведенные выше соотношения справедливы и при гораздо менее жестких предположениях, не налагающих никаких специальных ограничений ни на распределение моментов последовательных поступлений требований, ни на распределение продолжительностей обслуживания. Однако в тех случаях, когда частота поступлений заявок на обслуживание равняется, но не все заявки имеют возможность попасть в обслуживающую систему (например, из-за недостаточно большой вместимости блока ожидания), соотношения (1) необходимо видоизменить путем такого нового определения параметра, которое позволило бы учесть только действительно "допускаемые" в систему требования. Тогда, вводя в рассмотрение


будем иметь

В общем случае

Это означает, что только часть поступающих заявок на обслуживание действительно "проникает" в систему. Но в любом случае можно установить зависимость ЭФФ от LS Lq следующим образом. По определению

Если средняя скорость обслуживания равняется и, следовательно, средняя продолжительность обслуживания равняется 1/, то справедливо следующее соотношение:

Умножая левую и правую части этого соотношения на, получаем

Последнее соотношение остается справедливым и в том случае, если заменить на ЭФФ. При этом для ЭФФ можно записать

При анализе всех рассматриваемых ниже моделей основное внимание будет сосредоточено на получении формул для рn, поскольку, зная рn, нетрудно определить значение всех основных операционных характеристик интересующего нас процесса массового обслуживания в указанном ниже порядке:

Отметим, что в большинстве случаев при вычислении значений рn в рамках соответствующей математической модели особые трудности не встречаются. Что же касается распределений продолжительностей ожидания, то их численная оценка может оказаться далеко не простой. Таким образом, в большинстве случаев удобнее вычислять WS и Wq через LS и Lq.

Пример. Рассмотрим СМО с одним обслуживающим прибором. Пусть среднее количество требований, поступающих в систему в течение часа, равняется трем(), а скорость обслуживания составдяет 8 ()требований в час. Вероятность рn того, что в системе окажется n требований, определяется на основе данных, полученных в результате наблюдений за функционированием системы. Допустим, что мы имеем следующие статистические оценки:

(Как мы видим ниже, значения рn вычисляются с помощью формул, которые приходится специально выводить для каждого конкретного типа моделей массового обслуживания.)

На основе приведенных выше исходных данных можно вычислить LS, WS, Wq и Lq. Начнем с определения среднего числа требований, находящихся в обслуживающей системе:

требования. Поскольку =3, для средней продолжительности пребывания требования в системе имеем

Учитывая, что =8, получаем оценку средней продолжительности пребывания в очереди

откуда следует, что среднее количество находящихся в очереди "клиентов" равняется

Используя в качестве исходных данных, приведенные в предыдущем примере, вычислим:

(а) Среднее количество находящихся в очереди требований, используя при этом непосредственно известные значения рn.

По определению

Подставляем соответствующие значения

(б) Среднее количество клиентов, которые обслуживаются системой.

По определению среднее количество клиентов, которые обслуживаются системой равно LS-Lq. Из приведенных выше формулах находим

При увеличении параметра будет увеличиваться LS и Lq, а при увеличении параметра будет уменьшаться WS и Wq.

Система массового обслуживания (СМО) - система, которая производит обслуживание поступающих в неё требований. Обслуживание требований в СМО производится обслуживающими приборами. Классическая СМО содержит от одного до бесконечного числа приборов. В зависимости от наличия возможности ожидания поступающими требованиями начала обслуживания СМО подразделяются на

  1. системы с потерями, в которых требования, не нашедшие в момент поступления ни одного свободного прибора, теряются;
  2. системы с ожиданием, в которых имеется накопитель бесконечной ёмкости для буферизации поступивших требований, при этом ожидающие требования образуют очередь;
  3. системы с накопителем конечной ёмкости (ожиданием и ограничениями), в которых длина очереди не может превышать ёмкости накопителя; при этом требование, поступающее в переполненную СМО (отсутствуют свободные места для ожидания), теряется.

Выбор требования из очереди на обслуживание производится с помощью так называемой дисциплины обслуживания. Их примерами являются FCFS/FIFO (пришедший первым обслуживается первым), LCFS/LIFO (пришедший последним обслуживается первым), random (англ.) (случайный выбор). В системах с ожиданием накопитель в общем случае может иметь сложную структуру.

Основные понятия СМО

Требование (заявка) - запрос на обслуживание.

Входящий поток требований - совокупность требований, поступающих в СМО.

Время обслуживания - период времени, в течение которого обслуживается требование.

Математическая модель СМО - это совокупность математических выражений, описывающих входящий поток требований, процесс обслуживания и их взаимосвязь.

См. также

Литература

  • Клейнрок Л. Теория массового обслуживания. - М .: Машиностроение, 1979. - С. 432.
  • Бочаров П.П., Печинкин А.В. Теория массового обслуживания. - М .: РУДН, 1995. - С. 530.
  • Хемди А. Таха Глава 17. Системы массового обслуживания // Введение в исследование операций = Operations Research: An Introduction. - 7-е изд. - М .: «Вильямс», 2007. - С. 629-697. - ISBN 0-13-032374-8

Wikimedia Foundation . 2010 .

  • Галле, Эмиль
  • Оскар (кинопремия, 1979)

Смотреть что такое "Система массового обслуживания" в других словарях:

    система массового обслуживания - СМО Система, предназначенная для обслуживания случайных потоков вызовов абонентов в сетях связи (рис. Q 3). Общепринятое условное обозначение, используемое для описания систем массового обслуживания, состоит из трех символов A/S/m, где символ А… …

    Система массового обслуживания - совокупность пунктов (каналов, станций, приборов), на которые в случайные или неслучайные моменты времени поступают заявки на обслуживание (требования), подлежащие удовлетворению. Примеров таких систем можно привести очень много …

    СИСТЕМА МАССОВОГО ОБСЛУЖИВАНИЯ - математическая модель, созданная для изучения качества работы реальных систем, в которых реализуются последовательности однородных элементарных операций обслуживания. С.м.о. – основной предмет исследования теории массового обслуживания. С.м.о.… … Большой экономический словарь

    Многофазная система массового обслуживания - система, в которой поступившее требование проходит последовательно несколько этапов обработки. Для анализа таких систем необходимо знать не только длину очереди, время ожидания обслуживания, нагрузку каждого… … Экономико-математический словарь

    многофазная система массового обслуживания - Система, в которой поступившее требование проходит последовательно несколько этапов обработки. Для анализа таких систем необходимо знать не только длину очереди, время ожидания обслуживания, нагрузку каждого последовательного звена системы, но и… … Справочник технического переводчика

    Многоканальная система массового обслуживания - система, в которой поступившее требование может быть обслужено одним из нескольких каналов, входящих в блок обслуживания … Экономико-математический словарь

    многоканальная система массового обслуживания - Система, в которой поступившее требование может быть обслужено одним из нескольких каналов, входящих в блок обслуживания. Тематики экономика EN multichannel system … Справочник технического переводчика

    С ожиданием многоканальная система массового обслуживания, алгоритм к рой предусматривает накапливание вызовов в очереди, если в момент их прихода система оказалась занятой; при этом обслуживание вызовов ведется в нескольких каналах одновременно … Математическая энциклопедия

    МАССОВОГО ОБСЛУЖИВАНИЯ СИСТЕМА - с отказами система массового обслуживания, алгоритм к рой предусматривает выбывание вызовов, в момент прихода к рых все каналы оказались занятыми. Основные определения и обозначения см. в ст. Массового обслуживания система. 1) Естественными… … Математическая энциклопедия

    МАССОВОГО ОБСЛУЖИВАНИЯ СИСТЕМА - с ожиданнем и одним каналом обслуживания система массового обслуживания, алгоритм к рой предусматривает, что вызовы, не принятые немедленно к обслуживанию (заставшие систему занятой), накапливаются в очереди; при этом обслуживание следующего… … Математическая энциклопедия

Книги

  • Теория массового обслуживания , Г. И. Ивченко, В. А. Каштанов, И. Н. Коваленко. В настоящем пособии в доступной для первоначального изучения форме излагаются элементы основных направлений теории массового обслуживания - раздела теории вероятностей, изучающего системы,…