Грузовые Автомобили

Для чего нужны вертикальные и горизонтальные связи. Связевая система конструкций, схемы и основные функции связей по колоннам при монтаже и эксплуатации

Металлический каркас промышленного здания состоит из ряда "плоских" элементов жестких и хорошо воспринимающих нагрузки в своей плоскости, но гибких в перпендикулярном направлении (рамы, подстропильные и промежуточные стропильный фермы и др.). Основное назначение связей - объединять плоские элементы в пространственную систему, способную воспринимать нагрузки действующие на здание в любом направлении.

Во-вторых, связи служат, чтобы обеспечивать устойчивость сжатых и сжато-изогнутых стержней верхних поясов ферм, колонн и др. Опасность потери устойчивости таких элементов объясняется тем, что стержни металлического каркаса имеют большие длины и относительно небольшие компактные поперечные размеры. Связи раскрепляют сжатые элементы в промежуточных точках, уменьшая расчетные длины элементов в направлении этих раскреплений.

Различают следующие основные виды связей, применяемых в металлическом каркасе промышленного здания

1) поперечные связи между верхними поясами ферм (сквозные ригели рам в дальнейшем будут называться "фермами")(рис. 1) 2) вертикальные связи между фермами (рис.9); 3) продольные и поперечные связи, расположенные в плоскости нижних поясов ферм (рис.II); 4) вертикальные связи между колоннами (рис. 22). Рассмотрим компоновку, назначение и конструктивные решения узлов связей на примерах зданий с различными покрытиями.

I. ПОПЕРЕЧНЫЕ СВЯЗИ МЕЖДУ ВЕРХНИМИ ПОЯСАМИ ФЕРМ

1.1. Верхний пояс фермы, как любой сжатый стержень, может потерять устойчивость, если усилие в нем достигнет критического значения. Потеря устойчивости в таком случае произойдет в одной из двух плоскостей:


Рис.1. Поперечные связи между верхними поясами ферм, По 2-2 - вертикальные связи a) в плоскости фермы - стержень, потерявший устойчивость, останется в плоскости фермы. Это значит, что при взгляде на ферму сверху потери устойчивости не будет заметна. Как видно из рис.2, расчетная длина при проверке устойчивости верхнего пояса "и плоскости" фермы соответствует расстоянию - между узлами, то есть длине одной панели;

Рис.2. Расчетная длина верхнего пояса в плоскости фермы, (пунктир)

б) потери устойчивости верхнего пояса с выходом его из плоскости фермы показать лишь в плане. Предположим, что связи не поставлены. Тогда потеря устойчивости произойдет по схеме, приведенной на рис.За. Прогоны, которые обычно крепятся к верхнему, поясу фермы шарнирно (с помощью болтов), сами по себе, без связей, не будут препятствовать потери устойчивости ферм, так как после потери устойчивости верхние пояса ферм выпучатся, а прогоны свободно переместятся в новое положение. При этом расстояние между фермами (пролет прогонов) сохранится.

Иная картина устойчивости будет наблюдаться, если поставить связи. Связи могут быть крестовые - с двумя диагоналями (рис. 3,6) и облегченные, треугольные (рис. 3, в), т.е. с одной диагональю. Сжатые диагонали, очевидно, выключаются из работы, потеряв устойчивость, а растянутые будут препятствовать искажению прямоугольников, не дадут им превратиться в параллелограммы. Следовательно, в точках крепления диагоналей пояс фермы сохранит свое первоначальное положение и расчетная длинй его "из плоскости" будет равна участку "Л-В" (рис,3, в), т.е. двум панелям. Верхние пояса всех ферм, связанных с этими точками с помощью прогонов (или распорок по фонарям), будут иметь такие же расчетные длины, как и пояса двух ферм, непосредственно закрепленных связями, т.е. участки А" -В", A""-B"" имеют расчетные длины, равные двум панелям.

Рис.3. Потеря устойчивости верхних поясов ферм; а) в покрытии без связей; б) схема натяжения и выключения раскосов связей; в) обеспечение устойчивости веря поясов с помощью стержневых связей

Обратим внимание на ошибку, которая может быть допущена при определении расчетной длины верхнего пояса из плоскости фермы. На рис.3в прогон пересекает диагональ связей в точке "f". Создается впечатление, что прогон прикреплен к диагонали связей, и расчетную длину верхнего пояса из плоскости фермы казалось бы, можно брать равной панели. Однако это неверно: прогоны и связи расположены в разных уровнях, между ними "f" имеется зазор (рис. 7)

1.2. В зданиях с фонарем (рис.4) верхний пояс не раскреплен из плоскости ферма на большом участке, т.к. под фонарем нет прогонов. Если считать, что конструкций стенового ограждения фонаря вместе с прогоном фиксируют точку "Б", то расчётная длина верхнего пояса из плоскости "Б~Б". Введение распорки в середине пролета фонаря уменьшает расчетную длину из плоскости фермы (рис.4б) до трех панелей.


Рис.4. Расчетные длины верхнего пояса под фонарем:
а) без распорок - 6 панелей;
б) с одной распоркой - 3 панели;
в) при шаге ферм 12 м вводится промежуточный связевой пояс ПП

В качестве распорки используется верхний пояс вертикальных связей (раздел 2), но могут быть применены специально предназначенные для этой,цели парные уголки или другие профили,

1.3. В последнее время с целью экономии металла принято функции связей по верхним поясам возлагать на кровельный настил, который при его надежном прикреплении к фермам может обеспечивать устойчивость верхних поясов из плоскости ферм.

Так в беспрогонных покрытиях с железобетонным настилом устойчивость верхних поясов из плоскости ферм обеспечивается приваркой закладных частей настила к верхним поясам. В таком случае расчетная длина верхнего пояса из. плоскости фермы может быть принята равной длине одной панели фермы. 0 приварке настила к поясам ферм должна быть сделаны указания, в примечании на чертеже.

Во время возведения здания эти прикрепления плит к поясам должны контролироваться. При этом требуется составлять акт на скрытые работы. Профилированный настил также может выполнять роль связей по верхним поясам, если его прикрепить е помощью дюбелей к прогонам.

Лучшим конструктивным решением при использовании профилированного настила в качестве связей будет такое, при котором прогоны крепятся к ферме так, что верхняя полка прогона находится в одним уровне с верхней полкой пояса фермы. В этом случае настил пристреливается дюбелями по четырем своим сторонам - к прогонам и верхним поясам ферм. Для удобства крепления прогонов к фермам в этом случае можно использовать фермы покрытия не с треугольной решеткой, а с нисходящими раскосами (рис.5).


Рис.5. Использование профилированного настила в качестве связей по верхнему поясу:
а) ферма покрытия с нисходящими раскосами;
б) вариант решения узла опирания прогона в одном уровне с верхним поясом фермы

При экономических преимуществах замены связей настилом, прикрепленным к поясам, покрытия оказываются лишенными одной немаловажной функции, выполняемой связями. Связи по верхним поясам кроме того, что обеспечивают устойчивость ферм, являются также фиксаторами правильного взаимного положения ферм во время монтажа. Поэтому при монтаже покрытия без связей рекомендуется предусматривать использование временных (съемных) инвентарных связей, т.е. монтажных кондукторов.

При наличии фонарей в покрытиях, где настил служит в качества связей по верхнему поясу, под фонарем для обеспечения устойчивости пояса устраиваются связи в виде диагоналей при шаге ферм 6 м или в виде неполных диагоналей при шаге ферм 12 м (рис.6). При этом расчетная длина верхнего пояса ферм при проверке устойчивости из плоскости принимается равной двум панелям.


Рис.6. Обеспечение устойчивости верхних поясов ферм под фонарями в покрытиях, где функции связей выполняет; настил t а) шаг ферм б м, б) шаг ферм 12 м

1.4. В покрытиях с шагом ферм 12 м и с прогонами пролетом 12 м связевая ферма принимается шириной 6 м. В этом случае вводится дополнительный промежуточный пояс из соответствующих профилей (рис.4, в) и конструируются связи так же, как, если бы шаг ферм был 6 м.

1.5. Расстояние по длина здания между стержневыми связями по верхнему поясу ферм не должно превышать 144 м. Поэтому в длинных зданиях связи ставятся не только в крайних панелях блока каркаса но и в середине или третях длины блока (рис. I).

Эти требования объясняются тем, что устойчивость ферм, рай-положенных далеко о,т связей, не всегда может быть надежно обеспечена, т.к, прогоны или распорки, прикрепляющие фермы к связевым блокам, допускают в узлах известную смещаемость вследствие разности диаметров болтов и отверстий. С увеличением числа узлов, т.е. с удаленнем связей, эта смешаемость суммируется и увеличивается, что уменьшает надежность обеспечения устойчивости ферм, расположенных далеко от связей.

Конструкции некоторых узлов связей, выполненных из уголковых и гнутосварных профилей, и их прикрепление к фермам показано на рис, 7, 8.

Итак, связи, расположенные в плоскости верхних поясов ферм, имеют следующее основное назначение: при загружении покрытия предотвращают потерю устойчивости этих поясов из плоскости ферм, то есть уменьшают расчетную длину верхних поясов при проверке устойчивости их из плоскости ферм.

2. ВЕРТИКАЛЬНЫЕ СВЯЗИ МЕЖДУ ФЕРМАМИ

Эти связи называют также монтажными, так как их главное назначение - удерживать в проектном положении поставленные на опоры фермы, не дать одиночным фермам опрокинуться во время монтажа от ветровых и случайных воздействий, т.к. центр тяжести фермы находится выше уровня, опор (рис. 9, а).

Вертикальные связи в виде цепочки распорок и ферм ставят по длине здания между стойками стропильных ферм. Связевые фермы для экономии металла соединяют между собой верхними и нижними распорками (рис.10). Таким образом, фермы вертикальных связей являются дисками, а прикрепленные к ним стержни-распорки обеспечивают промежуточные стропильные фермы или ригели рам от опрокидывания (рис.9б). Решетка связевых ферм, как правило, может быть произвольной (рис.9в) и выполняется из одиночных уголков или из прямоугольных гнуто-сварных труб. В покрытиях с шагом ферм 12 м, со шпренгельными прогонами или с настилом, усиленным шпренгелями, верхний пояс фермы вертикальных связей может иметь вид, показанный на рис.9г.

Вертикальные связи по ширине пролета располагаются на опорах (между колоннами) и в пролете между стойками.ферм не реже, чем через 15 м, т.е. при пролете здания 36 м они будут расположены в плоскостях двух стоек.



Рис.7. Прикрепление связей к верхним поясам ферм

Рис.8. Узлы покрытия и связей при шаге ферм 12 м (см. рис. 6);
а) Прикрепление связей, выполненных из замкнутых профилей к фермам с поясами из широкополочных двутавров
б) Узел Б



Рис.9. Вертикальные связи между фермами:
а) положение центра тяжести,
б) фермы-диски и распорки,
в) схемы решеток ферм,
г) связи в покрытиях с шагом ферм 12 м и со шпренгельыми прогонами

Фермы - диски вертикальных связей ставятся с шагом 30-36 м по длине здания. Стойки уголковых ферм, к которым крепятся связи в верхнем и нижнем узлах, принимаются крестового сечения (рис.10).

Связи могут прикрепляться также к специальныо предусмотренным для этогй цели вертикальным фасонкам . В составе блока при крупноблочном монтаже вертикальные связи являются необходимыми элементами, обеспечивающими неизменяемость блока.

Рис.10. Узел прикрепления верхнего пояса фермы вертикальных связей к стойке стропильной фермы. Аналогично выполняется нижний узел

ПРОДОЛЬНЫЕ ГОРИЗОНТАЛЬНЫЕ СВЯЗИ ПО НИЖНИМ ПОЯСАМ РИГЕЛЕЙ

Контур связей, расположенных в плоскости нижних сквозных ригелей, можно расчленить на продольные и поперечные связи (рис.11). Назначение продольных связей сводится к следующему:

3.1. Продольные связи воспринимают поперечные горизонтальные крановые воздействия, т.е воспринимают внецентренное приложение вертикального давления крана на колонну, вызывающее горизонтальное смещение рамы, а также поперечное торможение крана, приложенное к одной раме (рис.12а) и передает эти воздействия на соседние рамы, менее нагруженные (рис.12б). Таким образом обеспечивается пространственность каркаса при работе его на местные нагрузки, вызывающие горизонтальные смещения ригеля рамы.




Рис.11. Связи по нижним поясам ригелей рам


Рис.12. Схема воспринятая поперечных горизонтальных нагрузок продольными связями по нижним поясам:
а) смешение рам от вертикального внецентренного приложения крановой нагрузки и от торможения;
б) передача поперечных нагрузок на связи

3.2. Отметим, что боковая нагрузка от ветра передается одинаково на все рамы, вызывая одинаковое смешение их. Поперечных сил между рамами в этом случае не возникает и поэтому в каркасах с шагом рам 6 м продольные связи не воспринимают ветровой нагрузки,

При шаге колонн 12 м и более в каркасах, имеющих стойки фахверка (стенового каркаса), продольные связи работают на эту нагрузи; Они являются верхними горизонтальными опорами стоек фахверка. Таким образом, в этом случае продольные связи передают усилия от ветровых нагрузок со стоек фахверка на соседние рамы (рис.13) и связи нагружены усилиями от ветровой нагрузки по длине шага рам.

Рис.13. Передача ветровой нагрузки со стоек фахверка на продольные связи

3.3. В крайних, панелях ригеля вследствие того, что жестко защемленный ригель на опоре испытывает изгибающие моменты противоположного знака по отношению к знаку момента в пролете, дается сжатие нижнего пояса (рис.14).




Рис.14. Сжатие в нижнем поясе ригеля вблизи опор

Закрепить нижний пояс от потери устойчивости из плоскости ригеля здесь можно лишь с помощью продольных связей (точка "f" рис.14). Устойчивость нижнего пояса в плоскости ригеля обеспечивается либо развитием момента инерции сечения пояса (в этой панели он может быть принят из двух неравнобоких уголков, составленных большими полками), либо введением дополнительной подвески.

3.4. В многопролетных зданиях с кранами тяжелого режима работы (7К, 8К) продольные связи в виде горизонтальных ферм ставятся друг от друга на расстояние не более двух пролетов (рис.15)


Рис.15. Связи по нижним поясам ригелей в многопролетном каркасе с кранами тяжелого режима работы (7К, 8К)

В многопролетных зданиях с кранами среднего режима работы при грузоподъемности до 50 т, при пролетах не более 36 м и с высотой до 25 м, а также с шагом рам 6 м, допускается не делать продольных связей по нижнему поясу. Однако распорки и тяжи, обеспечивающие устойчивость нижних поясов из плоскости ферм, должны быть поставлены в каждом пролете (рис.16).

Рис.16. Связи по нижним поясам Б каркасе с кранами среднего режима работы (4К - 6К)

4. ПОПЕРЕЧНЫЕ СВЯЗИ В ПЛОСКОСТИ НИЖНИХ ПОЯСОВ РИГЕЛЕЙ

4.1. Эти связи служат для передачи усилий от ветровых нагрузок, направленных в торец здания, со стоек торцевого фахверка на вертикальные связи между колоннами (рис.17) (передача давления показана стрелками).

Рис.17. Схема передачи ветровых нагрузок с торца здания на связи

4.2. Вместе с продольными связями они образуют замкнутый контур, увеличивающий общую жесткость каркаса здания.

Поперечные связи, как правило, ставятся под связями по верхним поясам, создавая с ними пространственные поперечные блоки, к которым с помощью прогонов, распорок вертикальных связей и продольных связей крепятся промежуточные фермы (ригели).

На рис.18, 19 показаны узлы крепления горизонтальных связей, выполненных из уголков и прямоугольных гнуто-сварных труб к поясам ферм. Следует отметить, что в каркасах с тяжелым режимом работы кранов 7К, 8К и при больших крановых нагрузках связи прикрепляются к фермам с помощью сварки (т.е. болтовые узлы должны быть обварены) либо с помощью высокопрочных болтов.


Рис.18. Конструкции уголковых связей по нижним пояс

5. ВЕРТИКАЛЬНЫЕ СВЯЗИ МЕЖДУ КОЛОННАМИ

Различают верхний ярус вертикальных связей между колоннами (связи, расположенные выше подкрановых балок) и нижний я ниже балок (рис.20).




Рис.19. Узел связей по нижнему поясу из прямоугольных гнуто-сварных профилей

Рис.20. Схема вертикальных связей между колоннами

5.1. Связи верхнего яруса имеют следующее назначение:
а) усилия от ветра, направленного в торец здания, передаются на связи верхнего яруса с торцевых поперечных связей, расположенных в плоскости нижних поясов, а затем, по растянутым подкосам, эти усилия передаются на подкрановые балки",
б) связи верхнего яруса обеспечивают -устойчивость колонн "из плоскости" рам. Таким образом, расчётная длина надкрановой части колонны (рис.20, пунктир) из плоскости рамы равна высоте этой части колонны;
в) вместе о нижним ярусом связей при монтаже удерживают крепленные анкерами колонны oт опрокидывания.

5.2. Вертикальные связи нижнего яруса
На связи нижнего яруса возлагается функции:
а) передавать ветровые усилия от связей верхнего яруса и от продольного торможения кранов (рис.20);
б) обеспечивать устойчивость подкрановой части колонии из плоскости рамы;

в) служить в качестве монтажных связей при установке колонн. В зданиях большой высоты связи нижнего яруса имеют дополнительную распорку между колоннами - (рис.21,

a). Ее назначение - уменьшить расчетную длину подкрановой части колонны из плоскости рамы. К этому компоновочному приему прибегают в том случае, когда при расчете проверю устойчивости колонны "из плоскости "не дает удовлетворительных результатов вследствие большой гибкости колонны (из плоскости рамы.).

Схемы вертикальных связей могут быть различными в зависимости от шага колонн, от необходимости использования проема между колоннами и т.п. (рис.21б).


Рис.21. Схемы вертикальных связей нижнего яруса:
а) дополнительная распорка для уменьшения расчетной длины колонны из плоскости рамы;
б) варианты связей между колоннами

Прикреплять связи нижнего яруса к подкрановым балкам в пролете не следует, так как при движении крана может возникнуть сжатие раскосов связей, а следовательно, их выключение. Связи верхнего яруса могут прикрепляться к тормозным балкам болтами с овальными отверстиями в вертикальном направлении.

Рис.22. Конструкции вертикальных связей между колоннами при шаге колонн 6 м

Рис. 23. Вертикальные связи между колоннами при шаге колонн 12 м: С- овальные отверстия в узле В, допускающие прогибы подкрановой балки без нагружения связей верхнего яруса; t - тормозная балка

В вертикальной плоскости верхний ярус связей обычно располагается, по оси надкрановой части колонны, а нижние связи должны быть двойными и их следует располагать в плоскостях как наружной, так и внутренней ветвей подкрановой части колонны (рис.22). Если имеется фахверк, то связи устанавливаются в плоскости фахверка и стыкуются со стойкой фахверка в среднем узле. По длине здания связи нижнего яруса размещаются в середине температурного блока (рис.22), но ни в крем случае не по концам, Размещение связей в середине здания обеспечивает свободную деформацию продольных элементов при колебаниях температуры (удлинение или укорочение подкрановых балок, продольных связей и др.).

Рис.24. Средний узел вертикальных связей (см.рис.23):
Г- крепление связей и стойке фахверка f на монтажной сварке, Д- на высокопрочных болтах, Q- ребра жесткости, 4-4 - расчетное сечениее фасонки. Болты рассчитывается на осевое усилие в диагонали связей и момент от эксцентриситета "а"

6. РАСЧЕТ СВЯЗЕЙ

В большинстве видов связей затруднительно точно определить величины усилий, которые будут ими восприниматься. Поэтому сечения элементов связей, как правило, подбираются по предельной гибкости . Для элементов, о которых заранее известно, что они будут испытывать сжатие, рекомендуется принимать предельную гибкость 200.

По известным усилиям рассчитывается вертикальные, связи между колоннами, а также поперечные связи по нижнему поясу ригеля и продольные горизонтальные связи (в случае учета пространственной работы каркаса).

  1. СНиП II-23-81*. Стальные конструкции,- М., Стройиздат, 1988, - 96 с.
  2. Беленя Е.И. и др. Металлические конструкции.- М., Стройиздат, 1989.- С.272-279.
  3. СНиП 2.01.07.-85. Нагрузки и воздействия.- М., Стройиздат, 1989.
  4. ЦНИИ Проектстальконструкция им. Мельникова, Типовые строительные конструкции, изделия и узлы. Серия 2.440-2, Узлы конструкций производственных зданий промышленных предприятий: Выпуск 4. Узлы тормозных конструкций и вертикальных связей. Чертежи КМ. Москва, 1989. 49 с.
  5. Пособие по проектированию стальных конструций (к СНиП 23-81*) - М., Центральный институт типового проектирования, 1989 -148с.
Поперечные элементы - рамы воспринимают нагрузки от стен, покрытий, перекрытий (в многоэтажных зданиях), снега, кранов, ветра, действующего на наружные стены и фонари, а также нагрузки от навесных стен. Продольные элементы каркаса - это подкрановые конструкции, подстропильные фермы, связи между колоннами и фермами, кровельные прогоны (или ребра стальных кровельных панелей).

Основные элементы каркаса - рамы. Они состоят из колонн и несущих конструкций покрытий - балок или ферм, длинномерных настилов и пр. Эти элементы соединяют в узлах шарнирно с помощью металлических закладных деталей, анкерных болтов и сварки. Рамы собирают из типовых элементов заводского изготовления. Другие элементы каркаса - фундаментные, обвязочные и подкрановые балки и подстропильные конструкции. Они обеспечивают устойчивость рам и воспринимают нагрузки от ветра, действующего на стены здания и фонари, а также нагрузки от кранов.

Составные элементы каркаса одноэтажных промышленных зданий

Как пример однопролетное здание, оборудованное мостовым краном (рис.1).

В состав каркаса входят следующие основные элементы:

  1. Колонны, расположенные с шагом Ш вдоль здания; основное назначение колонн поддерживать подкрановые балки и покрытие.
  2. Несущие конструкции покрытия (стропильные* балки или фермы), которые опираются непосредственно на колонны (если их шаг совпадает с шагом колонн) и образуют вместе с ними поперечные рамы каркаса.
  3. Если шаг несущих конструкций покрытия не совпадает с шагом колонн (например, 6 и 12 м), в состав каркаса вводят расположенные в продольных плоскостях подстропильные конструкции (также в виде балок или ферм), поддерживающие промежуточные несущие конструкции покрытия, расположенные между колоннами (рис.1,б).
  4. В некоторых (редких) случаях в состав каркаса вводятся прогоны, опирающиеся на несущие конструкции покрытия и располагаемые на расстояниях 1,5 или 3 м.
  5. Подкрановые балки, опирающиеся на колонны и несущие пути мостовых кранов. В зданиях с подвесными или напольными кранами подкрановые балки не нужны.
  6. Фундаментные балки, опирающиеся на фундаменты колонн и поддерживающие наружные стены здания.
  7. Обвязочные балки, опирающиеся на колонны и поддерживающие отдельные ярусы наружной стены (если она не по всей своей высоте опирается на фундаментные балки).
  8. При расстоянии между основными колоннами каркаса, в плоскостях наружных стен 12 м и более, а также в торцах здания устанавливают вспомогательные колонны (фахверк), облегчающие конструкцию стен.

Рис. 1. Каркас одноэтажного однопролетного здания (схема):

а - при одинаковом шаге колонн и несущих конструкций покрытия; б - при неодинаковом шаге колонн и несущих конструкций покрытия; 1 - колонны; 2 - несущие конструкции покрытия; 3 - подстропильные конструкции; 4 -- прогоны; 5 - подкрановые балки; 6 - фундаментные балки; 7 - обвязочные балки; в - продольные связи колонн; 9 - продольные вертикальные связи покрытия; 10 - поперечные горизонтальные связи покрытия; 11 - продольные горизонтальные связи покрытия.

В стальных каркасах обвязочные балки также относят к фахверку (рис. 2, а). Каркас в целом должен надежно и устойчиво работать под действием крановых, ветровых и других нагрузок.

Рис. 2 Схемы фахверка

а - фахверк продольной стены, б - торцовой фахверк, 1 - основные колонны, 2 - колонны фахверка, 3 - ригель фахверка, 4 - ферма покрытия

Вертикальные нагрузки Р от мостового крана (рис.3), передаваемые через подкрановые балки на колонны с большим эксцентриситетом, вызывают внецентренное сжатие тех колонн, против которых расположен в данный момент мост крана.

Рис. 3. Схема мостового крана

1 - габарит крана, 2 - тележка, 3 - мост крана, 4 - крюк, 5 - колесо крана; 6 - крановый рельс; 7 - подкрановая балка; 8 - колонна

Торможение тележки мостового крана при ее движении вдоль кранового моста (поперек пролета) создает горизонтальные поперечные тормозные силы Т1 действующие на те же колонны.

Торможение мостового крана в целом при его движении вдоль пролета создает продольные тормозные силы Т2, действующие вдоль рядов колонн. При грузоподъемности мостовых кранов, достигающей 650 т и выше, передаваемые ими на каркас нагрузки бывают очень велики. Подвесные краны движутся по путям, подвешенным к несущим конструкциям покрытия, и через них передают свои нагрузки на колонны.

Ветровые нагрузки при различных направлениях ветра могут действовать на каркас как в поперечном, так и в продольном направлениях.

Для обеспечения устойчивости отдельных элементов каркаса в процессе его монтажа и совместной пространственной их работы при воздействии на каркас различных нагрузок в состав каркаса вводят связи.

Основные виды связей каркаса одноэтажных зданий

1. Продольные связи колонн, обеспечивающие их устойчивость и совместную работу в продольном направлении при продольном торможении крана и продольном действии ветра, устанавливаются в конце или посередине длины каркаса.

Устойчивость остальных колонн в продольной плоскости достигается креплением их к связевым колоннам горизонтальными продольными элементами каркаса (подкрановыми балками, обвязочными балками или специальными распорками).

Связи этого вида могут иметь различную схему в зависимости от требований, предъявляемых к проектируемому зданию. Самыми простыми являются крестовые связи (рис. 4, а). В тех случаях, когда они мешают установке оборудования или врезаются в габарит проезда (рис. 4, б), их заменяют портальными связями.

В бескрановых зданиях небольшой высоты такие связи не нужны. Работа колонн в поперечном направлении во всех случаях обеспечивается большими в этом направлении размерами их поперечного сечения и жестким креплением их к фундаментам.

Рис.4. Схема вертикальных связей по колоннам. 1 - колонны, 2 - покрытие, 3 - связи, 4 - проезд

2. Продольные вертикальные связи покрытия , обеспечивающие устойчивость вертикального положения несущих конструкций (ферм) покрытия на колоннах, поскольку крепление их к колоннам считается шарнирным, располагаются по концам каркаса. Устойчивость остальных ферм достигается креплением их к связевым фермам горизонтальными распорками.

3. Поперечные горизонтальные связи , обеспечивающие устойчивость верхнего сжатого пояса ферм против продольного изгиба, располагаются по концам каркаса и образуются путем объединения верхних поясов двух соседних ферм в единую конструкцию, жесткую в горизонтальной плоскости. Устойчивость верхних поясов остальных ферм достигается креплением их к связевым фермам в плоскости верхнего пояса при помощи распорок (или ограждающих элементов покрытия) .

4. Продольные горизонтальные связи покрытия , располагаемые вдоль наружных стен в уровне нижнего пояса ферм.

Все три вида связей покрытия имеют целью объединить отдельные плоские несущие элементы покрытия, жесткие только в вертикальной плоскости, в единую неизменяемую пространственную конструкцию, воспринимающую местные горизонтальные нагрузки от кранов, нагрузки от ветра и распределяющую их между колоннами каркаса.

Каркасы одноэтажных промышленных зданий возводят чаще всего из сборного железобетона, стальные конструкции допускаются лишь при наличии особенно больших нагрузок, пролетов или других условий, делающих нецелесообразным применение железобетона. Расход стали в железобетонных конструкциях меньше, чем в стальных: в колоннах - в 2,5-3 раза; в фермах покрытия- в 2-2,5 раза. Виды промзданий в один этаж .

Однако стоимость стальных и железобетонных конструкций одинакового назначения отличается незначительно и в настоящее время каркасы делают в основном стальные.

Описанный выше комплекс связей в наиболее полной и четкой форме встречается в стальных каркасах, отдельные элементы которых имеют особенно малую жесткость. Более массивные элементы железобетонных каркасов имеют и большую жесткость. Поэтому в железобетонных каркасах отдельные виды связей могут отсутствовать. Например, в здании без фонарей, с несущими конструкциями покрытия в виде балок и настилом из крупнопанельных плит связи в покрытии не делают.

В монолитных железобетонных каркасах (которые в отечественной практике встречаются очень редко) жесткое соединение элементов каркаса в узлах и большая массивность элементов делают все виды связей ненужными.

Связи чаще всего делают металлические - из прокатных профилей. В железобетонных каркасах встречаются и железобетонные связи, в основном в виде распорок.

Каркас многопролетного здания отличается от каркаса однопролетного здания в первую очередь наличием внутренних средних колонн, поддерживающих покрытие и подкрановые балки. Фундаментные балки по внутренним рядам колонн устанавливают только для опирания внутренних стен, а обвязочные - при большой их высоте. Связи проектируются по тем же принципам, что и в однопролетных зданиях.

При сезонных колебаниях температуры конструкции каркаса испытывают температурные деформации, которые при большой длине каркаса и значительном температурном перепаде могут быть весьма существенными. Например, при длине каркаса 100 м, коэффициенте линейного расширения α = 0,00001 и температурном перепаде 50° (от +20° летом до -30° зимой), т. е. для конструкций, находящихся на открытом воздухе, деформация равна 100 0,00001 50 = 0,05 м - 5 см.

Свободным деформациям горизонтальных элементов каркаса препятствуют колонны, жестко закрепленные к фундаментам.

Во избежание появления в конструкциях значительных напряжений от этой причины, каркас делят в надземной части температурными швами на отдельные самостоятельные блоки.

Расстояния между температурными швами каркаса по длине и ширине здания выбирают так, чтобы можно было не считаться с усилиями, возникающими в элементах каркаса от климатических колебаний температуры.
Предельные расстояния между температурными швами для каркасов из различных материалов установлены СНиПом в пределах от 30 м (открытые монолитные железобетонные конструкции) до 150 м (стальной каркас отапливаемых зданий).

Температурный шов, плоскость которого расположена перпендикулярно к пролетам здания, называется поперечным, шов, разделяющий два смежных пролета - продольным.

Конструктивное выполнение температурных швов бывает различное. Поперечные швы всегда осуществляются путем установки парных колонн, продольные швы выполняются как путем установки парных колонн (рис. 5, а), так и путем устройства подвижных опор (рис. 5, б), обеспечивающих независимую деформацию, конструкций покрытия соседних, температурных блоков. В каркасах, разделенных температурными швами на отдельные блоки, связи устанавливают в каждом блоке, как в самостоятельном каркасе.

Рис.5. Варианты продольного температурного шва

а - с двумя колоннами, б - с подвижной опорой, 1 - балки, 2 - столик, 3 - колонна, 4 - каток

К каркасу относят также несущие конструкции рабочих площадок, которые бывают необходимы внутри основного объема здания (если они связаны с основными конструкциями здания).

Конструкции рабочих площадок состоят из колонн и опирающихся на них перекрытий. В зависимости от технологических требований рабочие площадки могут располагаться на одном или нескольких уровнях (рис. 6).

Рис. 6. Многоярусная рабочая площадка.

Таким образом, при строительстве одноэтажных и многоэтажных промышленных зданий в качестве несущей принимается, как правило, каркасная система. Каркас позволяет наилучшим образом организовать рациональную планировку производственного здания (получить большепролетные пространства, свободные от опор) и наиболее приемлем для восприятия значительных динамических и статических нагрузок, которым подвержено промышленное здание в процессе эксплуатации.

Видео - поэтапная сборка металоконструкций

Связи каркаса обеспечивают геометрическую неизменяемость и устойчивость элементов в продольном направлении, совместную пространственную работу конструкций каркаса, жесткость здания и удобство монтажа и состоят из двух основных систем: связей между колоннами и связей покрытия.

Связи между колоннами. Связи между колоннами (рис. 6.4) обеспечивают во время эксплуатации и монтажа геометрическую неизменяемость каркаса и его несущую способность в продольном направлении, воспринимают и передают на фундамент ветровые нагрузки, действующие на торец здания, и воздействия от продольного торможения мостовых кранов, а также обеспечивают устойчивость колонн из плоскости поперечных рам.

Система связей по колоннам состоит из надкрановых одноплоскостных связей V-образной схемы, располагаемых в плоскости продольных осей здания, и подкрановых двухплоскостных крестовой схемы, располагаемых в плоскостях ветвей колонны.

Подкрановые связи в каждом ряду колонн располагаются ближе к середине блока здания, чтобы обеспечить свободу температурных деформаций в обе стороны и снизить температурные напряжения в элементах каркаса. Количество связей (одна или две по длине блока) определяется их несущей способностью, длиной температурного отсека и наибольшим расстоянием L с от торца здания (температурного шва) до оси ближайшей вертикальной связи (см. табл. 6.1). При наличии двух вертикальных связей расстояние между ними в осях не должно превышать 40 – 50 м.

Надкрановые связи устанавливаются в крайних шагах колонн у торца здания или температурного блока, а также в местах, где предусматриваются вертикальные связи в плоскости опорных стоек стропильных ферм.

Промежуточные колонны (вне блоков связей) в уровне стропильных ферм раскрепляются распорками.

При большой высоте подкрановой части колонны целесообразна установка дополнительных горизонтальных распорок между колоннами, уменьшающих их расчетную длину из плоскости рамы (на рис. 6.4 показаны пунктиром).

Вертикальные связи по колоннам рассчитываются на крановые и ветровые нагрузки W , исходя из предположения работы на растяжение одного из раскосов крестовых подкрановых связей. При большой длине элементов, воспринимающих небольшие усилия, связи принимаются по предельной гибкости λ u = 200.

Элементы связей выполняются из горячекатанных уголков, распорки – из гнутых прямоугольных профилей.

Связи покрытия. Система связей покрытия состоит из горизонтальных и вертикальных связей, образующих жесткие блоки в торцах здания или температурного блока и при необходимости промежуточные блоки по длине отсека (рис. 6.5).

Горизонтальные связи в плоскости нижних поясов стропильных ферм проектируются двух типов. Связи первого типа состоят из поперечных и продольных связевых ферм и растяжек (см. рис. 6.5, в г – при шаге 12 м). Связи второго типа состоят из поперечных связевых ферм и растяжек (см. рис. 6.5, д – при шаге ферм 6 м; см. рис. 6.5, е – при шаге ферм 12 м).


Рис. 6.4. Схема связей по колоннам


6.5. Связи покрытия


Рис. 6.5 (продолжение)


Поперечные связевые фермы по нижним поясам стропильных ферм предусматриваются в торцах здания или температурного (сейсмического) отсека (см. рис. 6.5, д , е ). Предусматривается также дополнительно одна связевая горизонтальная ферма в середине здания или отсека при их длине более 144 м в зданиях, возводимых в районах с расчетной температурой наружного воздуха –40 о С и выше, и при длине здания более 120 м в зданиях, возводимых в районах с расчетной температурой ниже –40 о С (см. рис. 6.5, в , г ). Тем самым уменьшаются поперечные перемещения пояса фермы, возникающие вследствие податливости связей. Поперечные горизонтальные связи в уровне нижних поясов ферм воспринимают ветровую нагрузку на торец здания, передаваемую верхними частями стоек фахверка, и вместе с поперечными горизонтальными связями по верхним поясам ферм и вертикальными связями между фермами обеспечивают пространственную жесткость покрытия.

Продольные горизонтальные связи в плоскости нижних поясов стропильных ферм предусматриваются вдоль крайних рядов колонн в зданиях:

с мостовыми опорными кранами групп режимов работы 7К и 8К, требующими устройства галерей для прохода вдоль крановых путей;

с подстропильными фермами;

с расчетной сейсмичностью 7, 8 и 9 баллов;

с отметкой низа стропильных ферм свыше 18 м независимо от грузоподъемности кранов;

в зданиях с кровлей по железобетонным плитам, оборудованных мостовыми опорными кранами общего назначения грузоподъемностью свыше 50 т при шаге стропильных ферм 6 м и свыше 20 т при шаге ферм 12 м;

в однопролетных зданиях с кровлей по стальному профилированному настилу, оборудованных кранами грузоподъемностью свыше 16 т;

при шаге стропильных ферм 12 м с применением стоек продольного фахверка.

Поперечные горизонтальные связи в уровне верхних поясов стропильных ферм предусматриваются для обеспечения устойчивости поясов из плоскости ферм. Из-за решетки поперечных связей по верхним поясам ферм затрудняется использование решетчатых прогонов и поэтому поперечные связи, как правило, не применяются. В этом случае развязка ферм обеспечивается системой вертикальных связей между фермами.

В зданиях с кровлей по железобетонным плитам в уровне верхних поясов стропильных ферм предусматриваются распорки (см. рис. 6.5, а ). В зданиях с кровлей по стальному профилированному настилу распорки располагаются только в подфонарном пространстве, раскрепление ферм между собой осуществляется прогонами (см. рис. 6.5, б ); при расчетной сейсмичности 7, 8 и 9 баллов предусматриваются также поперечные связевые фермы или диафрагмы жесткости, устанавливаемые в торцах сейсмического отсека (см. рис. 6.5, ж – при шаге ферм 6 м; см. рис. 6.5, к – при шаге ферм 12 м), и дополнительно не менее одной при длине отсека более 96 м в зданиях с расчетной сейсмичностью 7 баллов и при длине отсека более 60 м в зданиях с расчетной сейсмичностью 8 и 9 баллов.

В диафрагмах жесткости профилированный настил, кроме основных функций ограждающих конструкций, выполняет функцию горизонтальных связей по верхним поясам стропильных ферм. Поперечные диафрагмы жесткости и горизонтальные связевые фермы воспринимают продольные расчетные горизонтальные нагрузки от покрытия.

В зданиях с фонарем в случае устройства промежуточной диафрагмы жесткости фонарь над диафрагмой должен быть прерван. Диафрагмы жесткости выполняются из профилированного настила марок H60-845-0,9 или H75-750-0,9 по ГОСТ 24045-94 с усиленным креплением его к прогонам.

Стропильные фермы, не примыкающие непосредственно к поперечным связям, раскрепляются в плоскости расположения этих связей распорками и растяжками. Распорки обеспечивают необходимую боковую жесткость ферм при монтаже (предельная гибкость верхнего пояса фермы из ее плоскости при монтаже λ u = 220). Растяжки предусматриваются для уменьшения гибкости нижнего пояса с целью предотвращения вибрации и случайных погнутостей при перевозке. Предельная гибкость нижнего пояса из плоскости фермы принимается: λ u = 400 – при статической нагрузке и λ u = 250 – при кранах режимов работы 7К и 8К или при воздействии динамических нагрузок, приложенных непосредственно к ферме.

Для горизонтальных связей обычно принимается связевая ферма с треугольной решеткой. При шаге стропильных ферм 12 м стойки-распорки связевых ферм проектируются с достаточно большой вертикальной жесткостью (как правило, из гнутых прямоугольных профилей) для опирания на них длинных диагональных раскосов, выполненных из уголков с незначительной вертикальной жесткостью.

Вертикальные связи между фермами предусматриваются по длине здания или температурного отсека в местах размещения поперечных связевых ферм по нижним поясам ферм. В зданиях с расчетной сейсмичностью 7, 8 и 9 баллов и кровлей по стальному профилированному настилу по рядам колонн вертикальные связи устанавливаются в местах размещения связевых ферм или диафрагм жесткости по верхним поясам стропильных ферм.

Основное назначение вертикальных связей – обеспечить проектное положение ферм при монтаже и увеличить их боковую жесткость. Обычно устраивается одна-две вертикальные связи по ширине пролета (через 12 – 15 м).

При опирании нижнего узла стропильных ферм на оголовок колонны сверху вертикальные связи располагаются также в плоскости опорных стоек ферм. При примыкании стропильных ферм сбоку к колонне эти связи располагаются в плоскости, совмещенной с плоскостью устройства вертикальных связей надкрановой части колонны.

В покрытиях зданий, эксплуатируемых в климатических районах с расчетной температурой ниже –40 о С, следует, как правило, предусматривать (дополнительно к обычно применяемым связям) вертикальные связи, расположенные по середине каждого пролета вдоль всего здания.

При наличии жесткого диска кровли в уровне верхних поясов ферм следует предусматривать инвентарные съемные связи для выверки проектного положения конструкций и обеспечения их устойчивости в процессе монтажа.

Для обеспечения пространственной жесткости и геометрической неизменяемости всего здания в целом, а также для обеспечения устойчивости колонн из плоскости поперечных рам, устанавливают вертикальные связи между колоннами.

Вертикальные связи между колоннами имеют наиболее существенное значение для создания пространственной жесткости каркаса машзала. Они предназначены для:

– создания продольной жесткости каркаса, необходимой для его нормальной эксплуатации и монтажа;

– обеспечения устойчивости колонн из плоскости поперечных рам;

– восприятия ветровой нагрузки, действующей на торец здания, и сил продольного торможения мостовых кранов и передачи их на фундаменты.

Связи по колоннам размещают в подкрановой части колонн (связи по нижним частям колонн) и в надкрановой части колонн (связи по верхним частям колонн) (рис. 2.4,а).

в
б
б
а
в

Рис. 2.5. Размещение вертикальных связей по колоннам:

а) связей нет; б) правильное расположение связей;

в); г) неправильное размещение связей



Для обеспечения свободы развития температурных деформаций продольных элементов каркаса (подкрановых балок, прогонов, распорок) жесткий пространственный брус ставят в середине здания или температурного блока (рис. 2.5,б). Если жесткие связевые брусья будут поставлены по краям блока (рис. 2.5,в), то при перепаде температур (лето-зима) будет происходить стесненное развитие температурных деформаций продольных элементов каркаса. Стеснённые температурные деформации вызовут дополнительные напряжения в продольных элементах каркаса, которые должны быть учтены в расчетах.

Если пространственный брус установить только с одного края здания или температурного блока (рис. 2.5,г), то горизонтальное перемещение торцевой колонны на противоположном конце здания будет очень велико и может привести к повреждениям узлов сопряжения элементов. Расстояние от торца здания до оси ближайшей вертикальной связи (жесткого диска), а также между осями вертикальных связей в одном температурном отсеке, не должно превышать величин, указанных в табл. 42 СНиП.

Машинные залы электростанций обычно имеют значительную длину. В этом случае жесткий пространственный брус ставят по длине машзала в двух панелях. При принятых в курсовом проекте длинах машзалов жесткий пространственный брус можно расположить в одной панели в середине здания. Расстояние от него до торца здания не должно превышать 60 м.

Вертикальные связи в верхних частях колонн обладают небольшой жесткостью и незначительно препятствуют температурным деформациям каркаса. Поэтому вертикальные связи в верхних частях колонн размещают у торцов здания, у температурных швов и в средней части здания или температурного отсека, там, где располагают связи по нижним частям колонн (рис. 2.4).

Вертикальные связи в верхних частях колонн предназначены:

– для обеспечения удобства монтажа сооружения, который обычно начинается с краёв. Первая и вторая рамы и связи между ними образуют устойчивый элемент, к которому как бы прикрепляют остальные рамы;

– для восприятия ветровой нагрузки, действующей на торец здания. Благодаря этим связям нагрузка передается на подкрановые балки, затем на нижние связи между колоннами и далее на фундамент;

– для создания вместе со связями по нижним частям колонн жесткого пространственного бруса.

Связи по фермам

Связи по фермам предназначены для:

– создания (совестно со связями по колоннам) общей пространственной жесткости и геометрической неизменяемости каркаса;

– обеспечения устойчивости сжатых элементов ферм из плоскости ригеля путём сокращения их расчетной длины;

– восприятия горизонтальных нагрузок на отдельные рамы (поперечного торможения крановых тележек) и перераспределения их на всю систему плоских рам каркаса;

– восприятия и (совестно со связями по колоннам) передачи на фундаменты некоторых горизонтальных нагрузок на конструкции машзала (ветровых, действующих на торец здания);

– обеспечения удобства монтажа ферм.

Связи по фермам подразделяют на горизонтальные и вертикальные. Горизонтальные связи располагают в плоскости верхних и нижних поясов ферм (рис. 2.4,б,в). Горизонтальные связи, расположенные поперёк здания называют поперечными, а вдоль – продольными.

Вертикальные связи располагают между фермами (рис. 2.4,а). Их выполняют в виде самостоятельных монтажных элементов (ферм) и устанавливают совместно с поперечными связями по верхним и нижним поясам ферм. По ширине пролета ставят 3 и более вертикальные связевые фермы. Две, из которых располагают по опорным узлам ферм, а остальные в плоскости вертикальных стоек ферм. Расстояние между вертикальными связями по фермам от 6 до 15 м. Вертикальные связи между фермами служат для устранения деформаций сдвига элементов покрытия в продольном направлении. Поперечные горизонтальные связи в плоскости верхних и нижних поясов ферм (рис. 2.4,б, в) совместно с вертикальными связями между фермами устанавливают по торцам здания и в средней его части, там, где размещены вертикальные связи по колоннам. Они создают жесткие пространственные брусья у торцов здания и в средней его части. Пространственные брусья у торцов здания служат для восприятия ветровой нагрузки, действующей на торцевой фахверк и передачи ее на связи по колоннам, подкрановые балки и далее на фундамент.

Элементы верхнего пояса стропильных ферм сжаты и могут потерять устойчивость из плоскости ферм. Поперечные связи по верхним поясам ферм вместе с распорками закрепляют узлы ферм от перемещения в направлении продольной оси здания и обеспечивают устойчивость верхнего пояса из плоскости ферм. Продольные связевые элементы (распорки) снижают расчетную длину верхнего пояса ферм, если они сами закреплены от смещения жестким пространственным связевым брусом. В беспрогонных покрытиях ребра панелей закрепляют узлы ферм от смещения. В покрытиях по прогонам узлы ферм от смещения закрепляют сами прогоны, если они закреплены в горизонтальной связевой ферме.

Во время монтажа верхние пояса ферм закрепляют распорками в трёх или более точках. Это зависит от гибкости фермы в процессе монтажа. Если гибкость элементов верхнего пояса фермы не превышает 220 , распорки ставят по краям и в середине пролёта (рис. 2.4,б). Если 220 , то распорки ставят чаще. В беспрогонном покрытии это закрепление производят с помощью дополнительных распорок, а в покрытиях с прогонами распорками являются сами прогоны.

б
а

Рис. 2.6. Поперечное смещение рамы от действия

крановой нагрузки:

а) при отсутствии продольных связей по нижним поясам ферм;

б) при наличии продольных связей по нижним поясам ферм

Продольные горизонтальные связи по нижним поясам ферм (рис. 2.4,в и рис.2.6.) предназначены для перераспределения горизонтальной поперечной крановой нагрузки от торможения тележки крана. Эта нагрузка действует на отдельную раму и при отсутствии связей вызывает её значительные перемещения (рис. 2.6,а).

Продольные горизонтальные связи вовлекают в пространственную работу соседние рамы, вследствие чего поперечное смещение каркаса значительно уменьшается (рис. 2.6,6).

Продольные связи по нижним поясам ферм размещают в крайних панелях ферм вдоль всего здания. В машинных залах электростанций продольные связи размещают только в первых панелях нижних поясов ферм, прилегающих к колоннам крайнего ряда. С противоположной стороны фермы продольные связи не ставят, т.к. силу поперечного торможения крана воспринимает жесткая деаэраторная этажерка.

В зданиях пролётом 30 м для закрепления нижнего пояса от продольных перемещений устанавливают распорки в средней части пролета. Эти распорки уменьшают расчетную длину, а, следовательно, и гибкость нижнего пояса ферм.

1 марта 2012

Для придания цеху пространственной жесткости, а также для обеспечения устойчивости элементов рам устраиваются связи, располагаемые между рамами.

Различают связи: горизонтальные — в плоскости верхних и нижних поясов ферм — и вертикальные — как между , так и между колоннами.

Назначение горизонтальных связей по верхним поясам ферм было рассмотрено в разделе . Эти связи обеспечивают устойчивость верхнего пояса ферм из их плоскости. На фигуре показан пример расположения связей по верхним поясам ферм в покрытии с прогонами.

В беспрогонных покрытиях, в которых крупнопанельные железобетонные плиты привариваются к верхним поясам ферм, жесткость кровли настолько велика, что, казалось бы, нет необходимости в постановке связей.

Учитывая, однако, необходимость обеспечения надлежащей жесткости конструкций на время монтажа плит, а также и то обстоятельство, что нагрузка от плит не приложена строго вертикально по оси ферм и потому может вызвать кручение, считают необходимым ставить связи по верхним поясам ферм по краям температурных отсеков. Столь же необходимы распорки у конька ферм, у опор и под фонарными стойками.

Эти распорки служат для завязки верхних поясов всех промежуточных ферм. Гибкость верхнего пояса между раскрепленными на время монтажа плит точками не должна превышать 200 — 220. Связи по верхним поясам стропильных ферм крепятся к поясам черными болтами.

При изготовлении связей важно точно приварить фасонку к уголку, обеспечив соответствующий угол наклона, так как при помощи связей частично контролируется правильность геометрической схемы смонтированного сооружения.

Поэтому приварку фасонок к элементам связей рекомендуется производить в кондукторах. На фигуре показан простейший тип кондуктора в виде швеллера, на котором точно пробиты отверстия под необходимым углом.

Горизонтальные связи по нижним поясам ферм располагаются как поперек цеха (поперечные связи), так и вдоль цеха (продольные связи). Поперечные связи, расположенные у торцов цеха, используются в качестве ветровых ферм.

На них опираются стойки каркаса торцовой стены цеха, воспринимающего давление ветра. Поясами ветровой фермы служат нижние пояса стропильных ферм. Такие же поперечные связи по нижним поясам ферм устраивают у температурных швов (в целях образования жесткого диска).

При большой длине температурного блока поперечные связи ставятся также в средней части блока с тем, чтобы расстояние между поперечными связями не превышало 50 — 60 м. Это приходится делать потому, что соединение связей часто производится на черных болтах, допускающих большие сдвиги, вследствие чего влияние связей ре распространяется на большие расстояния.

Поперечная деформация каркаса от местной (крановой) нагрузки: а — при
отсутствии продольных связей; б — при наличии продольных связей.

Горизонтальные продольные связи по нижним поясам ферм имеют своим главным назначением вовлечение в пространственную работу соседних рам при действии местных, например крановых, нагрузок; тем самым уменьшаются деформации рамы и увеличивается поперечная жесткость цеха.

Особо важное значение приобретают продольные связи при тяжелых кранах и в цехах с тяжелым режимом работы, а также при легких и нежестких кровлях (из волнистой стали, асбестоцементных листов и т. п.). В зданиях с тяжелым режимом работы связи следует приваривать к нижнему поясу.

Для связевых ферм, как правило, принимают крестовую решетку, считая, что при воздействии нагрузок с какой-либо одной стороны работает только система вытянутых раскосов, а другая часть раскосов (сжатых) выключается из работы. Такое предположение справедливо, если раскосы гибкие (λ > 200).

Поэтому элементы крестовых связей, как правило, проектируют из одиночных уголков. При проверке гибкости перекрестных растянутых раскосов связей из одиночных уголков радиус инерции уголка принимается относительно оси, параллельной полке.

При треугольной решетке связевых ферм во всех раскосах могут возникнуть сжимающие усилия, а потому их необходимо проектировать с гибкостью λ < 200, что менее экономично.

В пролетах более 18 м из-за ограничения боковой гибкости нижних поясов ферм во многих случаях приходится ставить дополнительные распорки по середине пролета. Этим устраняется дрожание ферм при работе кранов.

Вертикальные связи между фермами обычно устанавливают у опор ферм (между колоннами) и в середине пролета (либо под стойками фонаря), располагая их по длине цеха в жестких панелях, т. е. там, где расположены поперечные связи по поясам ферм.

Основное назначение вертикальных связей заключается в приведении в жесткое неизменяемое состояние пространственной конструкции, состоящей из двух стропильных ферм и поперечных связей по верхнему и нижнему поясам ферм.

В цехах с кранами легкого, а иногда и среднего, режима работы при наличии жесткой кровли из крупнопанельных железобетонных плит, приваренных к стропильным фермам, система вертикальных связей может заменить систему поперечных связей по поясам ферм (кроме торцовых ветровых ферм).

При этом промежуточные фермы должны быть связаны распорками.

Конструкция вертикальных связей принимается в виде креста из одиночных уголков с обязательным горизонтальным замыкающим элементом или в виде фермочки с треугольной решеткой. Крепление вертикальной связи к стропильной ферме осуществляется на черных болтах.

Вследствие незначительности усилий, действующих в элементах связей покрытия, при конструировании их креплений может быть допущено незначительное отступление от центрирования.

Вертикальные связи между колоннами устанавливают вдоль цеха для обеспечения устойчивости цеха в продольном направлении, а также для восприятия сил продольного торможения и давления ветра на торец здания.

Если в поперечном направлении рамы, защемленные в фундаментах, являются неизменяемой конструкцией, то в продольном направлении ряд установленных рам, шарнирно связанных подкрановыми балками, представляет собой изменяемую систему, которая при отсутствии вертикальных связей между колоннами может сложиться (опоры колонн в продольном направлении надо считать шарнирными).

Поэтому сжатые элементы связей между колоннами (ниже подкрановых балок), а в зданиях с тяжелым режимом работы и растянутые элементы этих связей, имеющих существенное значение для устойчивости всего сооружения в целом, делают достаточно жесткими, чтобы избежать их дрожания. С этой целью ограничивают предельную гибкость таких элементов значением λ = 150.

Для прочих растянутых элементов связей между колоннами гибкость не должна превышать λ = 300, а сжатых λ = 200. Элементы крестовых связей между колоннами обычно делают из уголков. Особо мощные крестовые связи делают из парных швеллеров, соединенных решеткой или планками.

При определении гибкости пересекающихся стержней (в крестовой решетке) расчетная длина их в плоскости решетки принимается от центра узла до точки их пересечения. Расчетная длина стержней из плоскости фермы принимается по таблице.

Расчетная длина из плоскости фермы стержней перекрестной решетки

Характеристика узла пересечения стержней решетки При растяжении в поддерживающем стержне При неработающем поддерживающем стержне При сжатии в поддерживающем стержне
Оба стержня не прерываются 0,5 l 0,7 l l
Поддерживающий стержень прерывается и перекрывается фасонкой 0,7 l l l

Расчет крестовых связей обычно производится в предположении, что работают только растянутые элементы (на полную нагрузку). В случае, если учитывается работа элементов крестовой решетки также и на сжатие, нагрузка распределяется между раскосами поровну.

Для обеспечения свободы температурных продольных деформаций каркаса вертикальные связи между колоннами лучше всего располагать в середине температурного блока или вблизи от нее.

Но так как монтаж сооружения обычно начинается с краев, то желательно первые две колонны связать в раму так, чтобы они были устойчивы. Это заставляет конструировать связи так, как показано на фигуре Связи по нижним поясам ферм и между колоннами б, т. е. в крайних панелях устанавливать связи только в пределах верхней части колонн.

Такие связи допускают деформацию изгиба нижних частей колонн при изменениях температуры. В то же время один из раскосов, работая от ветровой нагрузки на растяжение, передает эти усилия на подкрановую балку.

Дальнейший путь ветровых усилий показан на фигуре Связи по нижним поясам ферм и между колоннами б; они передаются по жестким подкрановым балкам до средних связей и по ним спускаются в землю. Желательно выбирать такую схему связей, чтобы они примыкали к колоннам под углом, близким к 4 — 5°. В противном случае получаются слишком вытянутые тяжелые фасонки.

Рамные вертикальные связи: а — при шаге колонн 6 м;
б — при шаге колонн не меньше 12 м.

В случае, если по технологическим условиям нельзя полностью занять под связи ни одного пролета, а также при больших шагах колонн устраивают рамные связи; при этом считают, что от односторонней нагрузки работают на растяжение связи одного угла, а элементы другого угла из-за большой гибкости (λ = 200 / 250) выключаются из работы. При такой схеме работы конструкции мы получаем «трехшарнирную арку».

Вертикальные связи устанавливаются ниже подкрановой балки в плоскости подкрановой ветви колонны, а выше подкрановой балки — по оси сечения колонны. В цехах с тяжелым режимом работы связи ниже подкрановых балок прикрепляются к колоннам на заклепках (преимущественно) или на сварке.

«Проектирование стальных конструкций»,
К.К.Муханов


Выбор поперечного профиля многопролетных цехов зависит не только от заданного полезного габарита цеха и габарита мостовых кранов, но и от ряда общестроительных требований, в первую очередь от организации отвода воды с крыши и от устройства освещения средних пролетов. Отвод воды может быть как наружным, так и внутренним. Наружные водостоки устраиваются в нешироких цехах, а также…