Химия и пластмассы

Что такое предельный угол преломления. Предельный угол полного отражения

ЛАБОРАТОРНАЯ РАБОТА

ОПРЕДЕЛЕНИЕ показателя преломления жидкости методом рефрактометрии

Рефрактометры нашли широкое применение в медико-биологических исследованиях. Разработаны методики рефрактометрического определения содержания белка в сыворотке крови, основанные на зависимости показателя преломления раствора от концентрации растворенного вещества.

Призма угла 45 преломления выполнена из материала с показателем преломления. Угол минимального отклонения, создаваемого призмой 600, составляет 400. Рассчитайте показатель преломления материала призмы. Возникающий луч сжимает другую преломляющую поверхность, находит показатель преломления материала призмы. Найдите диапазон значений угла падения, для которого можно получить возникающий луч.

Свет падает при нормальном падении на одну грань стеклянной призмы показателя преломления. Каким будет угол выхода, когда угол призмы равен 400? Поскольку луч не должен появляться из призмы. С какого лица оно появляется? Равномерную призму показателя преломления 53 помещают в воду с показателем преломления. Рассчитайте угол минимального отклонения в воде.

ЦЕЛЬ занятия:

1. Изучитьрефрактрометрический метод определения показателя преломления жидкости.

2. Исследовать зависимость показателя преломления раствора от его концентрации [ n=f(C)].

ПЛАН ИЗУЧЕНИЯ ТЕМЫ:

1. Рефракция. Законы рефракции.

2. Физический смысл показателя преломления.

3. Явление полного внутреннего отражения и его применение в медицине.

Луч света имеет минимальное отклонение при прохождении через равностороннюю призму показателя преломления. Рассчитайте угол отклонения, угол падения и угол преломления. Луч света проходит через равностороннюю стеклянную призму, так что угол падения 3 равен углу возникновения. Если угол всплытия равен 4 углам призмы, вычислите показатель преломления стеклянной призмы.

Луч света, падающий на равностороннюю призму, показывает минимальное отклонение 300. Рассчитайте скорость света через стеклянную призму. Тонкая призма угла 40 дает отклонение 40. Какова ценность показателя преломления материала призмы? Является ли угол минимального отклонения разным для разных длин волн? Можно ли использовать призму для создания инверсии без отклонения? Можно ли использовать прямоугольную равнобедренную призму из стекла в качестве общей отражательной призмы?

4. Условие определения предельного угла полного внутреннего отражения.

5. Рефрактометр. Устройство и принцип работы

ЛИТЕРАТУРА

1. Лекции.

2. А.Н. Ремизов. Медицинская и биологическая физика, М., 2004, гл.21, с. 403 - 405.

3. Н.М. Ливенцев Курс физики, М., 1978, т.1, гл.10. с. 103 - 106.

4. М.Е. Блохина, И.А. Эссаулова, Г.В. Мансурова. Руководство к лаб. работам по медицинской и биологической физике, М., 2001, с. 57-62.

Являются ли падающие и возникающие лучи симметричными относительно основания призмы в положении минимального отклонения? Следовательно, угол падения и угол выхода равны. В минимальном положении отклонения призмы, как преломленный луч? Преломленный луч параллелен основанию призмы.

Световой луч, выходящий из более оптически плотной среды и падающий на поверхность раздела с оптически более тонкой средой, преломляется от петли падения согласно закону преломления Снеллиуса - угол преломления больше угла падения света. Если угол падения увеличивается, преломленный луч проходит параллельно граничной поверхности от некоторого значения.

ТЕОРЕТИЧЕСКИЕ ПРЕДПОСЫЛКИ РАБОТЫ

При переходе световой волны из одной среды в другую происходит изменение скорости распространения и длины волны (частота колебаний остается без изменений). Если лучи света падают на границу раздела сред под некоторым углом α, то направление их во второй среде изменяется и равно β.

Угол α, образованный лучом падающим и перпендикуляром, восстановленным в точке падения к поверхности раздела сред, называется углом падения луча (рис. 1). Угол β, образованный лучом преломления и перпендикуляром в точке падения, называется углом преломления (рис. 1).

Это противоречит предпосылке, что преломленный луч проходит через оптически более тонкий материал. Вместо преломленного пучка будет наблюдаться 100% отражающий луч света, угол падения которого соответствует углу падения. Говорят об общем отражении. Угол полного отражения может быть рассчитан с использованием закона преломления Снеллиуса. Два световых пучка ударяют по интерфейсу. Их цвет служит здесь только для лучшего различия, для упрощения здесь здесь пренебрегают!

Полное отражение является причиной природных явлений, таких как мираж или, казалось бы, мокрые дороги в летнюю жару. Здесь зеркальные изображения формируются путем полного отражения между слоями холодного и горячего воздуха. Гладкость полированных поверхностей также объясняется полным отражением. Из-за высокого показателя преломления алмаза световые лучи легко вводятся в организм, но только после того, как более или менее большое количество отражений может снова появиться из камня.

Явление преломления светового луча на границе раздела двух сред, называется рефракцией.

Взаимное геометрическое расположение лучей падающего и преломленного определяется законами преломления:

1. Луч падающий и луч преломленный лежат в одной плоскости с перпендикуляром, восстановленным к границе раздела в точке падения.

2. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных 2-х сред, равная отношению показателя преломления второй среды к показателю преломления первой среды.

где n 1,2 –относительный показатель преломления

где v–скорость света в среде.

Если свет переходит из среды с меньшим показателем преломления в среду с большим показателем преломления, то при максимальном угле падения α = 90 0 свет во второй среде будет распространяться только в пределах угла β пр, который называется предельным углом преломления (рис.2).

Явление, при котором луч идет из среды более плотной в менее плотную под углом больше предельного, называется полным внутренним отражением. Предельным углом полного внутреннего отражения называется такой угол падения, которому соответствует угол преломления, равный 90° (рис.3).

Таким образом, предельный угол преломления и предельный угол полного отражения для данных сред зависят от их показателей преломления. Это свойство нашло применение в приборах для измерения показателя преломления веществ: рефрактометрах, используемых для определения чистоты воды, концентрации общего белка сыворотки крови, для идентификации различных веществ.

Основной частью рефрактометра являются две прямоугольные призмы, сделанные из одного и того же сорта стекла. Призмы соприкасаются гипотенузными гранями.

Между призмами помещают каплю жидкости, показатель преломления которой требуется определить.

Луч света от источника направляется на матовую грань призмы, где свет рассеивается и из призмы (оптически более плотной среды) выходит под различными углами в жидкость (оптически менее плотную среду). Лучи, падающие на жидкость под углом больше предельного, испытывают полное отражение и выходят через вторую боковую грань призмы в зрительную трубу. Поле зрения, видимое в зрительную трубу, окажется разделенным на светлую и темную части.

Положение границы раздела определяется предельным углом полного отражения.

Устройство рефрактометра УРЛ.

Конструктивно прибор состоит из двух основных частей: верхней – корпуса, нижней – основания.

К корпусу прибора крепятся камеры: верхняя и нижняя. Нижняя камера, заключающая в себе измерительную призму, жестко закреплена на корпусе. Верхняя же камера, заключающая в себе осветительную призму, соединена с нижней и может поворачиваться относительно ее. Нижняя и верхняя части камеры имеют окна. На штуцере нижней камеры подвижно укреплен осветитель, свет от которого может быть направлен в одно из окон камер.

На оси прибора укреплены:

Рукоятка с окуляром и настроечным механизмом, облегчающим совмещение границы светотени с перекрестием сетки;

Лимб дисперсии для устранения окрашенности границы светотени, наблюдаемой в окуляр;

Механизм наведения, находящийся внутри корпуса, который вместе с рукояткой может поворачиваться на оси вдоль шкалы.

На передней стенке основания расположен выключатель для включения осветителя.

На боковой стенке расположен шнур с вилкой для подводки питания от сети.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. Какой угол называется углом падения?

2. Какой угол называется углом преломления?

3. Сформулируйте закон преломления.

4. Что называется относительным (абсолютным) показателем преломления?

5. Какая характеристика световой волны не изменяется при переходеволны 6. из одной среды в другую?

7. Что является причиной изменения направления распространения световой волны при переходе из одной среды в другую?

8. В чем заключается явление полного внутреннего отражения? При каких условиях оно наблюдается

9. Дайте понятие предельного угла полного внутреннего отражения.

10. Из чего состоит оптическая система действия рефрактометра?

11.Что такое волоконная оптика. Применение волоконной оптики в медицине?

12. С какой целью используется рефрактометр в медицине?

ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ

Рефрактометр, стеклянная палочка с оплавленным концом, водные растворы сахара, водные растворы NaCI известных концентраций, раствор NaCI неизвестной концентрации, дистиллированная вода.

Схема работы:

Последовательность действий

Способ выполнения задания

1. Проверка установки нуль-пункта рефрактометра.

Проверку и установку на нуль – пункта необходимо проводить по дистиллированной воде и при температуре 20 ±0,1 о С.

1.Откройте верхнюю камеру и промойте дистиллированной водой поверхности измерительной и осветительной призм и насухо протрите тканью.

2. Оплавленным концом стеклянной палочки нанести на плоскость измерительной призмы одну-две капли дистиллированной воды и закрыть верхнюю камеру.

3.Смещая осветитель, луч света направьте в окно верхней камеры.

4. Перемещая рукоятку с окуляром вдоль шкалы вверх и вниз, ввести в поле зрения границу светотени.

5. Установите вращением гайки окуляра по глазу наблюдателя резкость границы светотени, штрихов шкалы и перекрестия сетки.

6.Устраните окрашенность границы светотени вращением рукоятки дисперсионного компенсатора.

7. Поворотом рычага осветителя и вращением осветителя на оси, получите максимально контрастную границу светотени.

8. Границу светотени, перемещая рукоятку, подведите к центру перекрестия сетки. Если при совмещении с центром перекрестия сетки она прошла через отметку шкалы n ж =1,33299 и 0% шкалы сухих веществ, нуль-пункт установлен правильно.

9. Установку нуль-пункта проверьте два-три раза путем смещения рукоятки границы светотени и повторной подводкой ее к перекрестию сетки.

2. Измерение показателя преломления и концентрации водных растворов сахара.

1. На нижнюю призму поочередно нанесите растворы сахара различной концентрации.

2. Совместите визир с границей свет-тень и определите по левой шкале показатели преломления исследуемых растворов (n ж). Для каждого раствора измерение показателя преломления проведите три раза. Найдите среднее значение n ср. Одновременно с определением n ж по правой шкале определите концентрацию (С) сахара в растворах. Результаты занесите в таблицу 1.

Таблица 1

Растворы различной концентрации

Раствор №1

Раствор №2

Раствор №3

Водные растворы сахара

Концентрация сахара, определенная по прибору.

3. Исследование зависимости показателя преломления раствора от его концентрации.

1. Определите аналогичным способом показатели преломления трех водных растворов NaCI известных концентраций (5%, 10%, 15%) и одного с неизвестной концентрацией.

2. Для каждого раствора измерения показателя преломления проведите три раза. Найдите среднее значение n ср. Результаты измерений занесите в таблицу 2.

3. Постройте график зависимости n = f (C ) и по нему определите концентрацию NaCI исследуемого раствора Сх и внесите результат в таблицу 2 .

2. Проанализируйте полученные результаты и сформулируйте выводы.

5% раствор NaCI

10% раствор NaCI

15% раствор NaCI

Раствор NaCI неизвестной концентрации

Примечание. После проведения измерений необходимо открыть верхнюю камеру, промыть, досуха вытереть плоскости верхней и нижней камер и плавно опустить верхнюю камеру прибора. Прибор выключить.

Закон преломления света позволяет объяснить интересное и практически важное явление – полное отражение света.

При прохождении света из оптически менее плотной среды в более плотную, например из воздуха в стекло или воду, u1>u2; и согласно закону преломления (1.4) показатель преломления n>1, поэтому a>b (рис. 10, a): преломленный луч приближается к перпендикуляру к границе раздела сред.

Если направить луч света в обратном направлении – из оптически более плотной среды в оптически менее плотную вдоль бывшего преломленного луча (рис. 10, б) , то закон преломления запишется так:

Преломленный луч по выходе из оптически более плотной среды пойдет по линии бывшего падающего луча, поэтому a< b, т. е. преломленный луч отклоняется от перпендикуляра. По мере увеличения угла a угол преломления b растет, оставаясь всё время больше угла a. Наконец, при некотором угле падения значение угла преломления приблизится к 90° и преломленный луч пойдет почти по границе раздела сред (рис. 11). Наибольшему возможному углу преломления b=90° соответствует угол паления a0.
При падении света на границу двух сред световой луч, как об этом уже упоминалось, частично преломляется, а частично отражается от нее. При a>a0преломление света невозможно. Значит, луч должен полностью отразиться. Это явление и называется полным отражением света.

Для наблюдения полного отражения можно использовать стеклянный полуцилиндр с матовой задней поверхностью. Полуцилиндр закрепляют на диске так, чтобы середина плоской поверхности полуцилиндра совпадала с центром диска (рис. 12). Узкий пучок света от осветителя направляют снизу на боковую поверхность полуцилиндра перпендикулярно его поверхности. На этой поверхности луч не преломляется. На плоской поверхности луч частично преломляется и частично отражается. Отражение происходит в соответствии с законом отражения, a преломление – в соответствии с законом преломления (1.4).

Если увеличивать угол падения, то можно заметить, что яркость (и следовательно, энергия) отраженного пучка растет, в то время как яркость (энергия) преломленного пучка падает. Особенно быстро убывает энергия преломленного пучка, когда угол преломления приближается к 90°. Наконец, когда угол падения становится таким, что преломленный пучок идет вдоль границы раздела (см. рис. 11), доля отраженной энергии составляет почти 100%. Повернем осветитель, сделав угол паденияa большим a0. Мы увидим, что преломленный пучок исчез и весь свет отражается от границы раздела, т. е. происходит полное отражение света.

Угол паденияa0, соответствующий углу преломления 90°, называют предельным углом полного отражения. При sinb=1 формула (1.8) принимает вид

Из этого равенства и может быть найдено значение предельного угла полного отражения a0. Для воды (n=1,33) он оказывается равным 48°35", для стекла (n=1,5) он принимает значение 41°51", а для алмаза (n=2,42) этот угол составляет 24°40". Во всех случаях второй средой является воздух.

Явление полного отражения легко наблюдать на простом опыте. Нальем в стакан водуи поднимем его несколько выше уровня глаз. Поверхность воды при рассматривании ее снизу сквозь стенку кажется блестящей, словно посеребренной вследствие полного отражения света.

Полное отражение используют в так называемой волоконной оптике для передачи света и изображения по пучкам прозрачных гибких волокон – световодов. Световод представляет собой стеклянное волокно цилиндрической формы, покрытое оболочкой из прозрачного материала с меньшим, чем у волокна, показателем преломления. За счет многократного полного отражения свет может быть направлен по любому (прямому или изогнутому) пути
По мере улучшения технологии изготовления длинных пучков волокон – световодов все шире начинает применяться связь (в том числе и телевизионная) с помощью световых лучей.