Промышленное оборудование

Биология третий закон менделя. Законы менделя

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

РЕФЕРАТ

«Законы Менделя»

Работу выполнила Айрапетян Марина

Группа 36, факультет компьютерных технологий и прикладной математики, спец. 061800- Математические методы в экономике

Работу проверил Шаповаленко В.В.

Краснодар

Введение. 3

История. 3

Методы и ход работы Менделя. 4

Закон единообразия гибридов первого поколения. 6

Закон расщепления признаков. 7

Закон независимого наследования признаков. 10

Основные положения теории наследственности Менделя. 12

Условия выполнения законов Менделя. 12

Значение работ Менделя. 13


Введение

Основные законы наследуемости были описаны более века назад чешским монахом Грегором Менделем (1822-1884), преподававшим физику и естественную историю в средней школе г. Брюнна (г. Брно).

Законы Менделя - это принципы передачи наследственных признаков от родительских организмов к их потомкам, вытекающие из экспериментов Грегора Менделя. Эти принципы послужили основой для классической генетики и впоследствии были объяснены как следствие молекулярных механизмов наследственности. Хотя в русскоязычных учебниках обычно описывают три закона, «первый закон» не был открыт Менделем. Особое значение из открытых Менделем закономерностей имеет «гипотеза чистоты гамет».

Мендель занимался селекционированием гороха, и именно гороху, научной удаче и строгости опытов Менделя мы обязаны открытием основных законов наследуемости: закона единообразия гибридов первого поколения, закона расщепления и закона независимого комбинирования.

История

Следует отметить, что сам Грегор Мендель не формулировал свои выводы в качестве «законов» и не присваивал им никаких номеров. Более того, многие «открытые» им факты были давно и хорошо известны, на что сам Мендель указывает в своей работе.

Некоторые исследователи выделяют не три, а два закона Менделя. Например, в руководстве «Генетика человека» Ф. Фогеля и А. Мотульски излагаются три закона, а в книге Л. Эрман и П. Парсонса «Генетика поведения и эволюция» – два. При этом некоторые ученые объединяют первый и второй законы, считая, что первый закон является частью второго и описывает генотипы и фенотипы потомков первого поколения (F1). Другие исследователи объединяют в один второй и третий законы, полагая, что «закон независимого комбинирования» есть в сущности «закон независимости расщепления», протекающего одновременно по разным парам аллелей. Однако в отечественной литературе речь идет обычно о трех законах Менделя. Эту точку зрения принимаем и мы.

К середине XIX века было открыто явление доминантности (О.Саржэ, Ш.Ноден и др.). Часто все гибриды первого поколения похожи друг на друга (единообразие гибридов) и по данному признаку все они идентичны одному из родителей (его признак доминирует). Они же показали, что рецессивные (не проявляющиеся у гибридов первого поколения) признаки не исчезают; при скрещивании гибридов между собой во втором поколении часть гибридов имеет рецессивные признаки («возврат к родительским формам»). Было также показано (Дж. Госс и др.), что среди гибридов второго поколения с доминантным признаком встречаются разные - дающие и не дающие расщепление при самоопылении. Однако никто из этих исследователей не смог дать своим наблюдениям теоретическое обоснование.

Главной заслугой Менделя было создание теории наследственности, которая объясняла изученные им закономерности наследования.

Методы и ход работы Менделя

Мендель изучал, как наследуются отдельные признаки.

Мендель выбрал из всех признаков только альтернативные - такие, которые имели у его сортов два четко различающихся варианта (семена либо гладкие, либо морщинистые; промежуточных вариантов не бывает). Такое сознательное сужение задачи исследования позволило четко установить общие закономерности наследования.

Мендель спланировал и провел масштабный эксперимент. Им было получено от семеноводческих фирм 34 сорта гороха, из которых он отобрал 22 «чистых» (не дающих расщепления по изучаемым признакам при самоопылении) сорта. Затем он проводил искусственную гибридизацию сортов, а полученных гибридов скрещивал между собой. Он изучил наследование семи признаков, изучив в общей сложности около 20 000 гибридов второго поколения. Эксперимент облегчался удачным выбором объекта: горох в норме самоопылитель, но легко проводить искусственную гибридизацию. Горох был удобен по различным соображениям. Потомство этого растения обладает рядом чётко различимых признаков - зелёный или жёлтый цвет семядолей, гладкие или, напротив, морщинистые семена, вздутые или перетянутые бобы, длинная или короткая стеблевая ось соцветия и так далее. Переходных, половинчатых "смазанных" признаков не было. Всякий раз можно было уверенно говорить "да" или "нет", "или - или", иметь дело с альтернативой. А потому и оспаривать выводы Менделя, сомневаться в них не приходилось.

Мендель одним из первых в биологии использовал точные количественные методы для анализа данных. На основе знания теории вероятностей он понял необходимость анализа большого числа скрещиваний для устранения роли случайных отклонений.

Г. Мендель не был пионером в области изучения результатов скрещивания растений. Такие эксперименты проводились и до него, с той лишь разницей, что скрещивались растения разных видов. Потомки подобного скрещивания (поколение F 1) были стерильны, и, следовательно, оплодотворения и развития гибридов второго поколения (при описании селекционных экспериментов второе поколение обозначается F2) не происходило. Другой особенностью доменделевских работ было то, что большинство признаков, исследуемых в разных экспериментах по скрещиванию, были сложны как по типу наследования, так и с точки зрения их фенотипического выражения.

Гениальность (или удача) Менделя заключалась в том, что в своих экспериментах он не повторил ошибок предшественников. Как писала английская исследовательница Ш. Ауэрбах, «успех работы Менделя по сравнению с исследованиями его предшественников объясняется тем, что он обладал двумя существенными качествами, необходимыми для ученого: способностью задавать природе нужный вопрос и способностью правильно истолковывать ответ природы». Во-первых, в качестве экспериментальных растений Мендель использовал разные сорта декоративного гороха внутри одного рода Pisum. Поэтому растения, развившиеся в результате подобного скрещивания, были способны к воспроизводству. Во -вторых, в качестве экспериментальных признаков Мендель выбрал простые качественные признаки типа «или /или» (например, кожура горошины может быть либо гладкой, либо сморщенной), которые, как потом выяснилось, контролируются одним геном. В-третьих, подлинная удача (или гениальное предвидение) Менделя заключалось в том, что выбранные им признаки контролировались генами, содержавшими истинно доминантные аллели. И, наконец, интуиция подсказала Менделю, что все категории семян всех гибридных поколений следует точно, вплоть до последней горошины, пересчитывать, не ограничиваясь общими утверждениями, суммирующими только наиболее характерные результаты (скажем, таких–то семян больше, чем таких-то).

Закон единообразия гибридов первого поколения

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

При скрещивании организмов, различающихся по одной паре контрастных признаков, за которые отвечают аллели одного гена, первое поколение гибридов единообразно по фенотипу и генотипу. По фенотипу все гибриды первого поколения характеризуются доминантным признаком, по генотипу всё первое поколение гибридов гетерозиготное

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака - на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с желтыми и зелеными семенами, у всех потомков семена были желтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный), всегда подавлял другой (рецессивный).

Кодоминирование и неполное доминирование

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования. Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот.

При кодоминировании, в отличие от неполного доминирования, у гетерозигот признаки проявляются одновременно (смешанно). Типичный пример кодоминирования - наследование групп крови системы АВ0 у человека, где А и В - доминантные гены, а 0 - рецессивный. По этой системе генотип 00 определяет первую группу крови, АА и А0 - вторую, ВВ и В0 - третью, а АВ будет определять четвёртую группу крови. Т.о. всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвертая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В).

Скрещивание:

1. Моногибридное. Наблюдение ведется только по одному признаку, т.е. отслеживаются аллели одного гена.
2. Дигибридное. Наблюдение ведется по двум признакам, те.е отслеживаются аллели двух генов.

Генетические обозначения:

Р – родители; F – потомство, число указывает на порядковый номер поколения, F1, F2.

Х – значок скрещивания, мужские особи, женские особи; А, а, В, в, С, с – отдельно взятые наследственные признаки. А, В, С – доминантные аллели гена, а, в, с – рецессивные аллели гена. Аа – , гетерозигота; аа – рецессивная гомозигота, АА – доминантная гомозигота.

Моногибридное скрещивание.

Классическим примером моногибридного скрещивания является скрещивание сортов с желтыми и зелеными семенами: все потомки имели желтые семена. Мендель пришел к выводу, что у гибрида первого поколения из каждой пары альтернативных признаков проявляется только один – доминантный, а второй – рецессивный – не развивается, как бы исчезает.

Р АА * аа – родители (чистые линии)

А, а – родителей

Аа – первое поколение гибридов

Эта закономерность была названа законом единообразия гибридов первого поколения или законом доминирования. Это первый закон Менделя: при скрещивании двух организмов, относящихся к разным чистым линиям (двух организмов), отличающихся друг от друга по одной паре альтернативных признаков, все первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей.

Второй закон Менделя

Семена гибридов первого поколения использовались Менделем для получения вроторого поколения. При скрещивании происходит расщепление признаков в определенном числовом отношении. Часть гибридов несет доминантный признак, часть – рецессивный.

F1 Аа * Аа А, а, А, а F2 АА (0,25); Аа (0,25); Аа (0,25); аа (0,25)

В потомстве происходит расщепление признаков в соотношении 3:1.

Для объяснения явлений доминирования и расщепления Мендель предложил ипотезу чистоты гамет: наследственные факторы при образовании гибридов не смешиваются, а сохраняются в неизменном виде.

Второй закон Менделя
можно сформулировать: при скрещивании двух потомков первого поколения между собой (двух гетерозиготных особей) во втором поколении наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по – 1:2:1.

Третий закон Менделя
: при дигибридном скрещивании у гибридов второго поколения каждая пара контрастных признаков наследуется независимо от других и дает с ними разные сочетания. Закон справедлив лишь в тех случаях, когда анализируемые признаки не сцеплены друг с другом, т.е. находятся в негомологичных хромосомах.

Рассмотрим опыт Менделя, в котором он изучал независимое наследование признаков у гороха. Одно из скрещиваемых растений имело гладкие, желтые семена, а другое морщинистые и зеленые. В первом поколении гибридов растения имели гладкие и желтые семена. Во втором поколении произошло расщепление по фенотипу 9:3:3:1.

Третий закон Менделя формулируется так: расщепление по каждой паре генов идет независимо от других пар генов.

Законы Менделя - это принципы передачи наследственных признаков от родителей к потомкам, названные в честь своего первооткрывателя . Объяснения научных терминов - в .

Законы Менделя справедливы только для моногенных признаков , то есть признаков, каждый из которых определяется одним геном. Те признаки, на проявление которых влияют два или несколько генов, наследуются по более сложным правилам.

Закон единообразия гибридов первого поколения (первый закон Менделя) (другое название – закон доминирования признаков): при скрещивании двух гомозиготных организмов, один из которых гомозиготен по доминантному аллелю данного гена, а другой – по рецессивному, все особи первого поколения гибридов (F1) будут одинаковыми по признаку, определяемому данным геном, и идентичными тому из родителей, который несет доминантный аллель. Все особи первого поколения от такого скрещивания будут гетерозиготными.

Предположим, мы скрестили кота черного окраса и кошку коричневого. Черный и коричневый окрас определяется аллелями одного и того же гена, аллель черного окраса В доминирует над аллелем коричневого b. Скрещивание можно записать как BB (кот) x bb (кошка). Все котята от этого скрещивания будут черными и иметь генотип Вb (рисунок 1).

Заметим, что рецессивный признак (коричневый окрас) на самом деле никуда не пропал, он замаскирован доминантным признаком и, как мы сейчас увидим, проявится в последующих поколениях.

Закон расщепления (второй закон Менделя) : при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении (F2) число потомков, идентичных по данному признаку доминантному родителю, будет в 3 раза больше, чем число потомков, идентичных рецессивному родителю. Другими словами, расщепление по фенотипу во втором поколении будет равно 3:1 (3 фенотипически доминантных: 1 фенотипически рецессивный). (расщепление - это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении). По генотипу расщепление будет равно 1:2:1 (1 гомозигота по доминантному аллелю: 2 гетерозиготы: 1 гомозигота по рецессивному аллелю).

Такое расщепление происходит благодаря принципу, который получил название закона чистоты гамет . Закон чистоты гамет гласит: в каждую гамету (половую клетку – яйцеклетку или сперматозоид) попадает только один аллель из пары аллелей данного гена родительской особи. Когда гаметы сливаются при оплодотворении, происходит их случайное соединение, которое и приводит к данному расщеплению.

Возвращаясь к нашему примеру с кошками, предположим, ваши черные котята подросли, вы за ними не уследили, и двое из них произвели потомство – четырех котят.

И кот, и кошка гетерозиготы по гену окраса, они имеют генотип Bb. Каждый из них согласно закону чистоты гамет производит гаметы двух типов – B и b. В их потомстве будет 3 котенка черных (ВB и Bb) и 1 коричневый (bb) (Рис. 2) (На самом деле, эта закономерность статистическая, поэтому расщепление выполняется в среднем, и такой точности в реальном случае может и не наблюдаться).

Для наглядности результаты скрещивания на рисунке приведены в таблице, соответствующей так называемой решетке Пеннета (диаграмме, позволяющей быстро и ясно расписать конкретное скрещивание, которой часто пользуются генетики).

Закон независимого наследования (третий закон Менделя) - при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях. скрещивании). Закон независимого расщепления выполняется только для генов, находящихся в негомологичных хромосомах (для несцепленных генов).

Ключевой момент здесь то, что разные гены (если они не находятся в одной хромосоме) наследуются независимо друг от друга. Продолжим наш пример из жизни кошек. Длина шерсти (ген L) и окрас (ген В) наследуются независимо друг от друга (расположены в разных хромосомах). Короткая шерсть (аллель L) доминирует над длинной (l), а черный окрас (B) – над коричневым b. Предположим, мы скрещиваем короткошерстного черного кота (BB LL) с длинношерстной коричневой кошкой (bb ll) .

В первом поколении (F1) все котята будут черными и короткошерстными, а генотип их будет Bb Ll. Однако коричневый окрас и длинношерстность никуда не делись – контролирующие их аллели просто «спрятались» в генотипе гетерозиготных животных! Скрестив кота и кошку из этих потомков, во втором поколении (F2) мы будем наблюдать расщепление 9:3:3:1 (9 короткошерстных черных, 3 длинношерстных черных, 3 короткошерстных коричневых и 1 длинношерстный коричневый). Почему так происходит и какие генотипы у этих потомков, показано в таблице.

В заключение еще раз напомним, что расщепление по законам Менделя – явление статистическое и соблюдается только в случае наличия достаточно большого количества животных и в случае, когда аллели изучаемых генов не влияют на жизнеспособность потомства. Если эти условия не соблюдаются, в потомстве будут наблюдаться отклонения от менделевских соотношений.

Гибридизация - это скрещивание особей, отличающихся по генотипу. Скрещивание, при котором у родительских особей учитывается одна пара альтернативных признаков, называет­ся моногибридным, две пары признаков - дигибридным , более чем две пары - полигибридным .

Скрещивание животных и растений (гибридизация) про­водится человеком с незапамятных времен, однако устано­вить закономерности передачи наследственных признаков не удавалось. Гибридологический метод Г. Менделя, с помощью которого были выявлены эти закономерности, имеет следую­щие особенности:

▪ подбор пар для скрещивания ("чистые линии");

▪ анализ наследования отдельных альтернативных (взаи­моисключающих) признаков в ряду поколений;

▪ точный количественный учет потомков с различной ком­бинацией признаков (использование математических мето­дов).

Первый закон Менделя - закон единообразия гибридов перво­го поколения. Г. Мендель скрещивал чистые линии растений гороха с желтыми и зелеными семенами (альтернативные признаки). Чистые линии - это организмы, не дающие рас­щепления при скрещивании с такими же по генотипу, т. е, они являются гомозиготными по данному признаку:

При анализе результатов скрещивания оказалось, что все потомки (гибриды) в первом поколении одинаковы по фено­типу (все растения имели горошины желтого цвета) и по гено­типу (гетерозиготы). Первый закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, на­блюдается единообразие гибридов первого поколения как по фе­нотипу, так и по генотипу.

Второй закон Менделя - закон расщепления. При скрещива­нии гибридов первого поколения, т. е. гетерозиготных осо­бей, получается следующий результат:

Особи, содержащие доминантный ген А, имеют желтую окраску семян, а содержащие оба рецессивных гена - зеле­ную. Следовательно, соотношение особей по фенотипу (окрас­ке семян) - 3:1 (3 части с доминантным признаком и 1 часть - с рецессивным), по генотипу: 1 часть особей - желтые гомо­зиготы (АА), 2 части - желтые гетерозиготы (Аа) и 1 часть - зеленые гомозиготы (аа). Второй закон Менделя формулиру­ется следующим образом: при скрещивании гибридов первого поколения (гетерозиготных организмов), анализируемых по од­ной паре альтернативных признаков, наблюдается расщепление в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

При экспериментальной и селекционной работе довольно часто возникает необходимость выяснить генотип особи с доми­нантным признаком. Для этого проводят анализирующее скрещи­вание : исследуемую особь скрещивают с рецессивной гомозиго­той. Если она была гомозиготной, то гибриды первого поколения будут единообразны - все потомки будут иметь доминантный

Закономерности наследования 79

признак. Если особь была гетерозиготна, то в результате скрещи­вания происходит расщепление признаков у потомков в соотно­шении 1:1:

Иногда (обычно при получении чистых линий) применя­ют возвратное скрещивание - скрещивание потомков с одним из родителей. В некоторых случаях (при изучении сцепления генов) проводят реципрокное скрещивание - скрещивание двух родительских особей (например, AaBb и aabb), при котором сначала гетерозиготной является материнская особь, а рецессивной - отцовская, а затем - наоборот (скрещивания Р: АаВb х aabb и Р: aabb х АаВb).

Изучив наследование одной пары аллелей, Мендель решил проследить наследование двух признаков одновременно. С этой целью он использовал гомозиготные растения гороха, отличающиеся по двум парам альтернативных признаков: се­мена желтые гладкие и зеленые морщинистые. В результате такого скрещивания в первом поколении он получил расте­ния с желтыми гладкими семенами. Этот результат показал, что закон единообразия гибридов первого поколения прояв­ляется не только при моногибридном, но и при полигибрид­ном скрещивании, если родительские формы гомозиготны:

Затем Мендель скрестил гибриды первого поколения меж­ду собой - P(F 1): AaBb x AaBb.

Для анализа результатов полигибридного скрещивания обычно используют решетку Пеннета , в которой по горизон­тали записывают женские гаметы, а по вертикали - мужские:

В результате свободного комбинирования гамет в зиготах получаются разные сочетания генов. Легко подсчитать, что по фенотипу потомство делится на 4 группы: 9 частей растений с горошинами желтыми гладкими (А-Б-), 3 части - с желтыми морщинистыми (A-bb), 3 части - с зелеными гладкими (aaB-) и 1 часть - с зелеными морщинистыми (aabb), т. е. происхо­дит расщепление в соотношении 9:3:3:1, или (3+1) 2 . Отсюда можно сделать вывод, что при скрещивании гетерозиготных особей, анализируемых по нескольким парам альтернативных признаков, в потомстве наблюдается расщепление по фено­типу в соотношении (3+1) n , где n - число анализируемых признаков.

Результаты скрещивания удобно записывать с помощью фенотипического радикала - краткой записи генотипа, сде­ланной на основе фенотипа. Например, запись А-В- означает, что если в генотипе есть хотя бы один доминантный ген из па­ры аллельных, то независимо от второго гена в фенотипе про­явится доминантный признак.

Если проанализировать расщепление по каждой из пар признаков (желтый и зеленый цвет, гладкая и морщинистая поверхность), то получится 12 особей с желтыми (гладкими) и 4 особи с зелеными (морщинистыми) семенами. Их соотно­шение равно 12:4, или 3:1. Следовательно, при дигибридном скрещивании каждая пара признаков в потомстве дает рас­щепление независимо от другой пары. Это является результа­том случайного комбинирования генов (и соответствующих им признаков), что приводит к новым сочетаниям признаков, которых не было у родительских форм. В нашем примере, ис­ходные формы гороха имели желтые гладкие и зеленые морщинистые семена, а во втором поколении получены растения не только с сочетанием родительских признаков, но и с новы­ми сочетаниями - желтыми морщинистыми и зелеными глад­кими семенами. Отсюда следует

Третий закон Менделя - закон независимого комбинирования признаков . При скрещивании гомозиготных организмов, анали­зируемых по двум (или более) парам альтернативных признаков, во втором поколении наблюдается независимое комбинирование генов разных аллельных пар и соответствующих им признаков.

Анализируя результаты расщепления признаков во втором поколении (появление рецессивных гомозигот), Мендель пришел к выводу, что в гетерозиготном состоянии наследст­венные факторы не смешиваются и не изменяют друг друга. В дальнейшем это представление получило цитологическое обоснование (расхождение гомологичных хромосом при мейозе) и было названо гипотезой "чистоты гамет" (У. Бэтсон, 1902). Ее можно свести к следующим двум основным положениям:

▪ у гибридного организма гены не гибридизируются (не смешиваются), а находятся в чистом аллельном состоянии;

▪ из аллельной пары в гамету попадает только один ген вследствие расхождения гомологичных хромосом и хроматид при мейозе.

Законы Менделя носят статистический характер (выполняются на большом количестве особей) и являются универсальными, т.е. они присущи всем живым орга­низмам. Для проявления законов Менделя необходимо со­блюдение следующих условий:

▪ гены разных аллельных пар должны находиться в разных парах гомологичных хромосом;

▪ между генами не должно быть сцепления и взаимодейст­вия, кроме полного доминирования;

▪ должна быть равная вероятность образования гамет и зи­гот разного типа, а также равная вероятность выживания ор­ганизмов с различными генотипами (не должно быть леталь­ных генов).

В основе независимого наследования генов разных аллель­ных пар лежит генный уровень организации наследственного материала, заключающийся в том, что гены относительно не­зависимы друг от друга.

Отклонения от ожидаемого расщепления по законам Мен­деля вызывают летальные гены. Например, при скре­щивании гетерозиготных каракульских овец расщепление в F) составляет 2:1 (вместо ожидаемого 3:1). Ягнята, гомозигот­ные по доминантной аллели серой окраски (W), нежизнеспособны и погибают из-за недоразвития рубца желудка:

Аналогичным образом у человека наследуются брахидактилия и серповидно-клеточная анемия . Ген брахидактилии (ко­роткие толстые пальцы) - доминантный. У гетерозигот на­блюдается брахидактилия, а гомозиготы по этому гену поги­бают на ранних стадиях эмбриогенеза. У человека имеется ген нормального гемоглобина (НbA) и ген серповидно-клеточной анемии (НbS). Гетерозиготы по этим генам жизнеспособны, а гомозиготы по HbS погибают в раннем детском возрасте (ге­моглобин S не способен связывать и переносить кислород).

Затруднения в интерпретации результатов скрещивания (отклонения от законов Менделя) может вызвать и явление плейотропии, когда один ген отвечает за проявление не­скольких признаков. Так, у гомозиготных серых каракульских овец ген W детерминирует не только серую окраску шерсти, но и недоразвитие пищеварительной системы. Примерами плейотропного действия гена у человека являются синдромы Марфана и "голубых склер". При синдроме Марфана один ген вызывает развитие "паучьих пальцев", подвывих хрусталика, деформацию грудной клетки, аневризму аорты, высокий свод стопы. При синдроме "голубых склер" у человека наблюдают­ся голубая окраска склер, ломкость костей и пороки развития сердца.

При плейотропии, вероятно, наблюдается недостаточ­ность ферментов, активных в нескольких типах тканей или в одной, но широко распространенной. В основе синдрома Марфана, по-видимому, лежит один и тот же дефект развития соединительной ткани.

I закон Менделя. Закон единообразия гибридов первого поколения

При скрещивании гомозиготных особей, отличающихся по одной паре альтернативных (взаимоисключающих) признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу.

Скрещивали растения гороха с желтыми (доминантный признак) и зелеными (рецессивный признак) семенами. Образование гамет сопровождается мейозом. Каждое растение образует один сорт гамет. Из каждой гомологичной пары хромосом в гаметы отходят по одной хромосоме с одним из аллельных генов (А или а). После оплодотворения парность гомологичных хромосом восстанавливается, образуются гибриды. Все растения будут иметь семена только желтого цвета (фенотип), гетерозиготны по генотипу Аа. Это происходит при полном доминировании.

Гибрид Аа имеет один ген А от одного родителя, а второй ген - а - от другого родителя (рис. 73).

Гаплоидные гаметы (G), в отличие от диплоидных организмов, обводят кружочком.

В результате скрещивания получаются гибриды первого поколения, обозначаемые F 1 .

Для записи скрещиваний применяют специальную таблицу, предложенную английским генетиком Пеннетом и называемую решеткой Пеннета.

По горизонтали выписывают гаметы отцовской особи, по вертикали - материнской. В местах пересечений записывают геноти-

Рис. 73. Наследование при моногибридном скрещивании.

I - скрещивание двух сортов гороха с желтыми и зелеными семенами (Р); II

Цитологические основы I и II законов Менделя.

F 1 - гетерозиготы (Аа), F 2 - расщепление по генотипу 1 АА: 2 Аа: 1 аа.

пы потомков. В таблице число клеток зависит от числа типов гамет, образуемых скрещиваемыми особями.

II закон Менделя. Закон расщепления гибридов первого поколения

При скрещивании гибридов первого поколения между собой во втором поколении появляются особи как с доминантными, так и с рецессивными признаками и происходит расщепление по фенотипу в соотношении 3:1 (три доминантных фенотипа и один рецессивный) и 1:2:1 по генотипу (см. рис. 73). Такое расщепление возможно при полном доминировании.

Гипотеза «чистоты» гамет

Закон расщепления можно объяснить гипотезой «чистоты» гамет.

Явление несмешивания аллелей альтернативных признаков в гаметах гетерозиготного организма (гибрида) Мендель назвал ги- потезой «чистоты» гамет. За каждый признак отвечают два аллельных гена (Аа). При образовании гибридов аллельные гены не смешиваются, а остаются в неизмененном виде.

Гибриды Аа в результате мейоза образуют два типа гамет. В каждую гамету идет одна из пары гомологичных хромосом с ал- лельным геном А или аллельным геном а. Гаметы чисты от другого аллельного гена. При оплодотворении восстанавливается гомологичность хромосом и аллельность генов, проявляется рецессивный признак (зеленый цвет горошин), ген которого в гибридном организме не проявлял своего действия. Признаки развиваются в результате взаимодействия генов.

Неполное доминирование

При неполном доминировании гетерозиготные особи имеют собственный фенотип, и признак носит промежуточный характер.

При скрещивании растений ночной красавицы с красными и белыми цветками в первом поколении появляются особи с розовой окраской. При скрещивании гибридов первого поколения (розовые цветки) расщепление в потомстве по генотипу и фенотипу совпадает (рис. 74).


Рис. 74. Наследование при неполном доминировании у растения ночной красавицы.

Свойством неполного доминирования обладает ген, вызывающий серповидноклеточную анемию у человека.

Анализирующее скрещивание

Рецессивный признак (зеленый горох) проявляется только в гомозиготном состоянии. Гомозиготные (желтый горох) и гетерозиготные (желтый горох) особи с доминантными признаками по фенотипу не отличаются друг от друга, но имеют разные генотипы. Их генотипы можно установить, скрестив с особями с известным генотипом. Такой особью может быть зеленый горох, имеющий гомозиготный рецессивный признак. Это скрещивание называют анализирующимися. Если в результате скрещивания все потомство будет единообразным, то исследуемая особь гомозиготна.

Если произойдет расщепление, то особь гетерозиготна. Потомство гетерозиготной особи дает расщепление в соотноше- нии 1:1.

III закон Менделя. Закон независимого комбинирования признаков (рис. 75). Организмы отличаются друг от друга по нескольким признакам.

Скрещивание особей, отличающихся по двум признакам, называют дигибридным, а по многим - полигибридным.

При скрещивании гомозиготных особей, отличающихся по двум парам альтернативных признаков, во втором поколении происходит независимое комбинирование признаков.

В результате дигибридного скрещивания все первое поколение единообразно. Во втором поколении происходит расщепление по фенотипу в соотношении 9:3:3:1.

Например, если скрестить горох с желтыми семенами и гладкой поверхностью (доминантный признак) с горохом с зелеными семенами и морщинистой поверхностью (рецессивный признак), то все первое поколение будет единообразным (желтые и гладкие семена).

При скрещивании гибридов между собой во втором поколении появились особи с признаками, которых не было у исходных форм (желтые морщинистые и зеленые гладкие семена). Эти признаки наследуются независимо друг от друга.

Дигетерозиготная особь образовывала 4 типа гамет

Для удобства подсчета особей, получившихся во втором поколении после скрещивания гибридов, пользуются решеткой Пеннета.

Рис. 75. Независимое распределение признаков при дигибридном скрещивании. А, В, а, b - доминантные и рецессивные аллели, контролирующие развитие двух признаков. G - половые клетки родителей; F 1 - гибриды первого поколения; F 2 - гибриды второго поколения.

В результате мейоза в каждую гамету отойдет по одному из аллельных генов из гомологичной пары хромосом.

Образуется 4 типа гамет. Расщепление после скрещивания в соотношении 9:3:3:1 (9 особей с двумя доминантными признаками, 1 особь с двумя рецессивными признаками, 3 особи с одним доминантным, а другим рецессивным признаками, 3 особи с доминантным и рецессивным признаками).

Появление особей с доминантными и рецессивными признаками возможно потому, что гены, отвечающие за цвет и форму горошин, находятся в различных негомологичных хромосомах.

Каждая пара аллельных генов распределяется независимо от другой пары, и поэтому гены могут комбинироваться независимо.

Гетерозиготная особь по «n» парам признаков образует 2 n типов гамет.

Вопросы для самоконтроля

1. Как формулируется I закон Менделя?

2. Горох с какими семенами скрещивал Мендель?

3. Растения с какими семенами получились в результате скрещивания?

4. Как формулируется II закон Менделя?

5. Растения с какими признаками получились в результате скрещивания гибридов первого поколения?

6. В каком числовом соотношении происходит расщепление?

7. Как можно объяснить закон расщепления?

8. Как объяснить гипотезу «чистоты» гамет?

9. Как объяснить неполное доминирование признаков? 10.Какое расщепление по фенотипу и генотипу происходит

после скрещивания гибридов первого поколения?

11.Когда производят анализирующее скрещивание?

12. Как производят анализирующее скрещивание?

13.Какое скрещивание называют дигибридным?

14. В каких хромосомах находятся гены, отвечающие за цвет и форму горошин?

15. Как формулируется III закон Менделя?

16. Какое расщепление по фенотипу происходит в первом поколении?

17. Какое расщепление происходит по фенотипу во втором поколении?

18.Что используют для удобства подсчета особей, получившихся после скрещивания гибридов?

19.Как можно объяснить появление особей с признаками, которых не было раньше?

Ключевые слова темы «Законы Менделя»

аллельность анемия

взаимодействие

гаметы

ген

генотип

гетерозигота

гибрид

гипотеза «чистоты» гамет

гомозигота

гомологичность

горох

горошина

действие

дигибрид

доминирование

единообразие

закон

мейоз

образование окраска

оплодотворение

особь

парность

поверхность

подсчет

поколение

полигибрид

потомство

появление

признак

растение

расщепление

решетка Пеннета

родители

свойство

семена

скрещивание

слияние

соотношение

сорт

удобство

фенотип

форма

характер

цвет

цветы

Множественный аллелизм

К числу аллельных генов могут относиться не два, а большее число генов. Это множественные аллели. Они возникают вслед- ствие мутации (замены или утраты нуклеотида в молекуле ДНК). Примером множественных аллелей могут быть гены, отвечающие за группы крови у человека: I A , I B , I 0 . Гены I A и I B доминантны по отношению к гену I 0 . В генотипе всегда присутствуют только два гена из серии аллелей. Гены I 0 I 0 определяют I группу крови, гены I A I A , I A I O - II группу, I B I B , I B I 0 - III группу, I A I B - IV группу.

Взаимодействие генов

Между геном и признаком существует сложная связь. Один ген может отвечать за развитие одного признака.

Гены отвечают за синтез белков, которые катализируют определенные биохимические реакции, в результате чего проявляются определенные признаки.

Один ген может отвечать за развитие нескольких признаков, проявляя плейотропное действие. Выраженность плейотропного действия гена зависит от биохимической реакции, которую ката- лизирует фермент, синтезируемый под контролем данного гена.

За развитие одного признака могут отвечать несколько генов - это полимерное действие гена.

Проявление признаков - результат взаимодействия различных биохимических реакций. Эти взаимодействия могут быть связаны с аллельными и неаллельными генами.

Взаимодействие аллельных генов.

Взаимодействие генов, находящихся в одной аллельной паре, происходит по типу:

. полного доминирования;

. неполного доминирования;

. кодоминирования;

. сверхдоминирования.

При полном доминировании действие одного (доминантного) гена полностью подавляет действие другого (рецессивного). При скрещивании в первом поколении проявляется доминантный признак (например желтый цвет горошин).

При неполном доминировании происходит ослабление действия доминантного аллеля в присутствии рецессивного. Гете- розиготные особи, полученные в результате скрещивания, имеют собственный генотип. Например, при скрещивании растений ночной красавицы с красными и белыми цветками появляются розовые.

При кодоминировании проявляется действие обоих генов при одновременном их присутствии. В результате проявляется новый признак.

Например, IV группа крови (I A I B) у человека формируется при взаимодействии генов I A и I B . По отдельности ген I A определяет II группу крови, а I B - III группу крови.

При сверхдоминировании у доминантного аллеля в гетерозиготном состоянии отмечается более сильное проявление признака, чем в гомозиготном.

Взаимодействие неаллельных генов

На один признак организма очень часто могут влиять несколько пар неаллельных генов.

Взаимодействие неаллельных генов происходит по типу:

. комплементарности;

. эпистаза;

. полимерии.

Комплементарное действие проявляется при одновременном присутствии в генотипе организмов двух доминантных неаллельных генов. Каждый из доминантных генов может проявляться самостоятельно, если другой находится в рецессивном состоянии, но их совместное присутствие в доминантном состоянии в зиготе обусловливает новое состояние признака.

Пример. Скрещивали два сорта душистого горошка с белыми цветками. Все гибриды первого поколения имели красные цветки. Окрас- ка цветков зависит от двух взаимодействующих генов А и В.

Белки (ферменты), синтезированные на основе генов А и В, катализируют биохимические реакции, которые приводят к прояв- лению признака (красная окраска цветков).

Эпистаз - взаимодействие, при котором один из доминантных или рецессивных неаллельных генов подавляет действие другого неаллельного гена. Ген, подавляющий действие другого, называют эпистатическим геном, или супрессором. Подавляемый ген называют гипостатическим. Эпистаз бывает доминантным и рецессивным.

Доминантный эпистаз. Примером доминантного эпистаза может быть наследование окраски оперения у кур. Доминантный ген С отвечает за окраску оперения. Доминантный неаллельный ген I подавляет развитие окраски оперения. В результате этого куры, имеющие ген С в генотипе, в присутствии гена I имеют белое оперение: IICC; IiCC; IiCc; Iicc. Куры с генотипом iicc также будут белыми, потому что эти гены находятся в рецессивном состоянии. Оперение кур с генотипом iiCC, iiCc будет окрашено. Белая окраска оперения обусловлена присутствием рецессивного аллеля гена i или наличием гена подавителя окраски I. В основе взаимодействия генов лежат биохимические связи между белками-ферментами, которые кодируются эпистатическими генами.

Рецессивный эпистаз. Рецессивным эпистазом объясняется бомбейский феномен - необычное наследование антигенов системы групп крови АВ0. Известны 4 группы крови.

В семье женщины с I группой крови (I 0 I 0) от мужчины со II группой крови (I A I A) родился ребенок с IV группой крови (I A I B), что невозможно. Оказалось, что женщина унаследовала от матери ген I B , от отца ген I 0 . Проявил действие только ген I 0 , поэтому

считалось, что женщина имеет I группу крови. Ген I B был подавлен рецессивным геном х, который находился в гомозиготном состоянии - хх.

У ребенка этой женщины подавленный ген I B проявил свое действие. Ребенок имел IV группу крови I A I B .

Полимерное действие генов связано с тем, что несколько неал- лельных генов могут отвечать за один и тот же признак, усиливая его проявление. Признаки, зависящие от полимерных генов, относят к количественным. Гены, отвечающие за развитие количественных признаков, дают суммарный эффект. Например, за пигментацию кожи у человека отвечают полимерные неаллельные гены S 1 и S 2 . В присутствии доминантных аллелей этих генов синтезируется много пигмента, в присутствии рецессивных - мало. Интенсивность окраски кожи зависит от количества пигмента, что определяется количеством доминантных генов.

От брака между мулатами S 1 s 1 S 2 s 2 рождаются дети с пигментацией кожи от светлой до темной, но вероятность рождения ребенка с белым и черным цветом кожи равна 1/16.

Многие признаки наследуются по принципу полимерии.

Вопросы для самоконтроля

1. Что такое множественные аллели?

2. Какие гены отвечают за группы крови у человека?

3. Какие группы крови есть у человека?

4. Какие связи существуют между геном и признаком?

5. Как взаимодействуют аллельные гены?

6. Как взаимодействуют неаллельные гены?

7. Как можно объяснить комплементарное действие гена?

8. Как можно объяснить эпистаз?

9. Как можно объяснить полимерное действие гена?

Ключевые слова темы «Множественные аллели и взаимодействие генов»

аллелизм аллель антигены брак

взаимодействие

генотип

гибрид

горох

горошек

группа крови

действие

дети

доминирование

женщина

замена

кодоминантность

кодоминирование

кожа

куры

мать

молекула

мулат

мутация

наличие

наследование

нуклеотиды

окраска

оперение

основа

отношение

пигмент

пигментация

плейотропия

подавитель

поколение

полимерия

признак

пример

присутствие

проявление

развитие

реакции

ребенок

результат

сверхдоминирование связь

синтез белка система

скрещивание

состояние

степень

утрата

феномен

ферменты

цвет

цветы

человек