Отопление, обогреватели, котлы

Выход рутения при делении ядер урана. Деление ядер: процесс расщепления атомного ядра

Деление ядрам -- процесс расщепления атомного ядра на два ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер -- экзотермический процесс , в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения. Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии.

В 1938 году немецкие учёные О. Ганн и Ф. Штрассман обнаружили, что при облучении урана нейтронами образуются элементы из середины периодической системы - барий и лантан, что заложило основу для практического использования ядерной энергии.

Деление тяжелых ядер происходит при захвате нейтронов. При этом испускаются новые частицы и освобождается энергия связи ядра, передаваемая осколкам деления.

Физики А. Мейтнер и О. Фриш объяснили это явление тем, что захватившее нейтрон ядро урана делится на две части, получившие название осколков . Вариантов деления насчитывается более двухсот, например:

  • 235U + 1 n > 139 Xe + 95 Sr + 2 1 n.
  • 92 0 54 38 0

При этом на одно ядро изотопа урана 235 U выделяется 200 МэВ энергии.

Большую часть этой энергии получают ядра-осколки, остальная приходится на кинетическую энергию нейтронов деления и энергию излучения.

Для синтеза одноименно заражённых протонов необходимо преодоление кулоновских сил отталкивания, что возможно при достаточно высоких скоростях сталкивающихся частиц. Необходимые условия для синтеза ядер гелия из протонов имеются в недрах звёзд. На земле термоядерная реакция синтеза осуществлена при экспериментальных термоядерных взрывах.

Поскольку у тяжёлых ядер соотношение числа нейтронов и протонов N/Z ?1,6, а у более легких ядер - осколков оно близко к единице, осколки в момент своего возникновения оказываются перегруженными нейтронами, чтобы перейти в стабильное состояние, они испускают вторичные нейтроны. Испускание вторичных нейтронов является важной особенностью реакции деления тяжёлых ядер, поэтому вторичные нейтроны называют еще нейтронами деления . При делении каждого ядра урана испускаются 2-3 нейтрона деления. Вторичные нейтроны могут вызвать новые акты деления, что делает возможным осуществление цепной реакции деления - ядерной реакции, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Цепная реакция характеризуется коэффициентом размножения нейтронов k, равным отношению числа нейтронов на данном этапе реакции к числу их на предыдущем этапе. Если k < 1, цепная реакция не возникает (или прекращается), при k > 1 идёт развивающаяся цепная реакция, число делений лавинообразно нарастает и реакция может стать взрывной. При k=1 идёт самоподдерживающаяся реакция, при которой число нейтронов остаётся постоянным. Именно такая цепная реакция осуществляется в ядерных реакторах.

Коэффициент размножения зависит от природы делящегося вещества, а для данного изотопа - от его количества, а также от размеров и формы активной зоны - пространства, в котором происходит цепная реакция. Не все нейтроны, обладающие энергией достаточно для деления ядра, участвуют в цепной реакции - часть их «застревает» в ядрах неделящихся примесей, всегда присутствующих в активной зоне, а часть покидает активную зону, размеры которой конечны, раньше, чем будет захвачена каким-либо ядром (утечка нейтронов). Минимальные размеры активной зоны, при которых возможна цепная реакция, называются критическими размерами , а минимальная масса делящихся веществ, находящихся в системе критических размеров, называется критической массой. Так, в куске чистого урана 92 235 U каждый нейтрон, захваченный ядром вызывает деление с испусканием в среднем 2,5 вторичных нейтронов, но если масса такого урана меньше 9 кг., то большинство нейтронов вылетают наружу, не вызвав деления, так что цепная реакция не возникает. Поэтому вещества, ядра которых способны делиться, хранят в виде изолированных друг от друга кусков, меньших критической массы. Если быстро и плотно соединить несколько таких кусков, так что их суммарная масса превысит критическую массу, начнётся лавинообразное размножение нейтронов, и цепная реакция приобретет неуправляемый взрывной характер. На этом основано устройство атомной бомбы.

Кроме реакции деления тяжелых ядер, существует еще один способ освобождения внутриядерной энергии - реакция синтеза легких ядер. Величина энерговыделения в процессе синтеза настолько велика, что при большой концентрации взаимодействующих ядер ее может оказаться достаточно для возникновения цепной термоядерной реакции. В этом процессе быстрое тепловое движение ядер поддерживается за счет энергии реакции, а сама реакция - за счет теплового движения. Для достижения необходимой кинетической энергии температура реагирующего вещества должна быть очень высокой (107 - 108 К). При такой температуре вещество находится в состоянии горячей, полностью ионизированной плазмы, состоящей из атомных ядер и электронов. Совершенно новые возможности открываются перед человечеством с осуществлением термоядерной реакции синтеза легких элементов. Можно представить себе три способа осуществления этой реакции:

  • 1) медленная термоядерная реакция, самопроизвольно происходящая в недрах Солнца и других звезд;
  • 2) быстрая самоподдерживающая термоядерная реакция неуправляемого характера, происходящая при взрыве водородной бомбы;
  • 3) управляемая термоядерная реакция.

Неуправляемая термоядерная реакция - это водородная бомба, взрыв которой происходит в результате ядерного взаимодействия:

Д + Д -> Не3 + n; Д + Д -> Т + р; Т + Д -> Не4 + n,

приводящего к синтезу изотопа гелия He3, содержащего в ядре два протона и один нейтрон, и обычного гелия Не4, содержащего в ядре два протона и два нейтрона. Здесь n - это нейтрон, а р - протон, Д - дейтерий и Т - тритий.

Начал опыты по облучению урана медленными нейтронами от радий-бериллиевого источника. Целью этих опытов, послуживших толчком к многочисленным аналогичным экспериментам, выполненным в других лабораториях, было обнаружение неизвестных в то время трансурановых элементов, которые предполагалось получить в результате - -распада образующихся при захвате нейтронов изотопов урана. Новые радиоактивные продукты действительно были найдены, однако дальнейшие исследования показали, что радиохимические свойства многих "новых трансурановых элементов" отличались от ожидаемых. Исследование этих необычных продуктов продолжалось вплоть до 1939 г., когда радиохимики Ган и Штрассман доказали, что новые активности принадлежат не тяжелым элементам, а атомам среднего веса. Правильная интерпретация необычного ядерного процесса была дана в том же году Мейтнер и Фришем , предположившими, что возбужденное ядро урана делится на два приблизительно равных по массе осколка. На основании анализа энергий связи элементов периодической таблицы они пришли к выводу, что в каждом акте деления должно освобождаться очень большое количество энергии, в несколько десятков раз превышающее энергию, выделяющуюся при -распаде. Это подтверждалось опытами Фриша, зарегистрировавшего в ионизационной камере импульсы от осколков деления, и Жолио , показавшего на основании измерения пробегов осколков, что последние обладают большой кинетической энергией.

Из рис.1 видно, что наибольшую устойчивость имеют ядра с А = 40-120, т.е. находящиеся в середине периодической таблицы. Энергетически выгодными являются процессы соединения (синтеза) легких ядер и деления тяжелых ядер. В обоих случаях конечные ядра располагаются в той области значений А, где удельная энергия связи больше, чем удельная энергия связи начальных ядер. Поэтому указанные процессы должны идти с выделением энергии. Пользуясь данными по удельным энергиям связи, можно оценить энергию, которая освобождается в одном акте деления. Пусть ядро с массовым числом А 1 = 240 делится на два равных осколка с А 2 = 120. В этом случае удельная энергия связи осколков по сравнению с удельной энергией связи начального ядра увеличивается на 0.8 МэВ (от 1 7.6 МэВ для ядра с А 1 = 240 до 2 8.4 МэВ для ядра с А 2 = 120). При этом должна выделяться энергия

Е = А 1 1 - 2А 2 2 = А 1 ( 2 - 1)240(8.4-7.6) МэВ 200 МэВ.

. Элементарная теория деления

Рассчитаем величину энергии, выделяющейся при делении тяжелого ядра. Подставим в (f.2) выражения для энергий связи ядер (f.1), полагая А 1 =240 и Z 1 = 90. Пренебрегая последним членом в (f.1) вследствие его малости и подставив значения параметров a 2 и a 3 ,получаем

Отсюда получим, что деление энергетически выгодно, когда Z 2 /A > 17. Величина Z 2 /A называется параметром делимости. Энергия Е, освобождающаяся при делении, растет с увеличением Z 2 /A ; Z 2 /A = 17 для ядер в районе иттрия и циркония. Из полученных оценок видно, что деление энергетически выгодно для всех ядер с A > 90. Почему же большинство ядер устойчиво по отношению к самопроизвольному делению? Чтобы ответить на этот вопрос, посмотрим, как меняется форма ядра в процессе деления.

В процессе деления ядро последовательно проходит через следующие стадии (рис.2): шар, эллипсоид, гантель, два грушевидных осколка, два сферических осколка. Как меняется потенциальная энергия ядра на различных стадиях деления? После того как деление произошло, и осколки находятся друг от друга на расстоянии, много большем их радиуса, потенциальную энергию осколков, определяемую кулоновским взаимодействием между ними, можно считать равной нулю.

Рассмотрим начальную стадию деления, когда ядро с увеличением r принимает форму все более вытянутого эллипсоида вращения. На этой стадии деления r - мера отклонения ядра от сферической формы (рис.3). Вследствие эволюции формы ядра изменение его потенциальной энергии определяется изменением суммы поверхностной и кулоновской энергий Е" п + Е" к. Предполагается, что объем ядра в процессе деформации остается неизменным. Поверхностная энергия Е" п при этом возрастает, так как увеличивается площадь поверхности ядра. Кулоновская энергия Е" к уменьшается, так как увеличивается среднее расстояние между нуклонами. Пусть сферическое ядро в результате незначительной деформации, характеризующейся малым параметром, приняло форму аксиально-симметричного эллипсоида. Можно показать, что поверхностная энергия Е" п и кулоновская энергия Е" к в зависимости от меняются следующим образом:

В случае малых эллипсоидальных деформаций рост поверхностной энергии происходит быстрее, чем уменьшение кулоновской энергии.
В области тяжелых ядер 2Е п > Е к сумма поверхностной и кулоновской энергий увеличивается с увеличением . Из (f.4) и (f.5) следует, что при малых эллипсоидальных деформациях рост поверхностной энергии препятствует дальнейшему изменению формы ядра, а, следовательно, и делению. Выражение (f.5) справедливо для малых значений (малых деформаций). Если деформация настолько велика, что ядро принимает форму гантели, то силы поверхностного натяжения, как и кулоновские силы, стремятся разделить ядро и придать осколкам шарообразную форму. На этой стадии деления увеличение деформации сопровождается уменьшением как кулоновской, так и поверхностной энергии. Т.е. при постепенном увеличении деформации ядра его потенциальная энергия проходит через максимум. Теперь r имеет смысл расстояния между центрами будущих осколков. При удалении осколков друг от друга потенциальная энергия их взаимодействия будет уменьшаться, так как уменьшается энергия кулоновского отталкивания Е к. Зависимость потенциальной энергии от расстояния между осколками показана на рис. 4. Нулевой уровень потенциальной энергии соответствует сумме поверхностной и кулоновской энергий двух невзаимодействующих осколков.
Наличие потенциального барьера препятствует мгновенному самопроизвольному делению ядер. Для того чтобы ядро мгновенно разделилось, ему необходимо сообщить энергию Q, превышающую высоту барьера Н. Максимум потенциальной энергии делящегося ядра примерно равен
е 2 Z 1 Z 2 /(R 1 +R 2), где R 1 и R 2 - радиусы осколков. Например, при делении ядра золота на два одинаковых осколка е 2 Z 1 Z 2 /(R 1 +R 2) = 173 МэВ, а величина энергии Е, освобождающейся при делении (), равна 132 МэВ. Таким образом, при делении ядра золота необходимо преодолеть потенциальный барьер высотой около 40 МэВ.
Высота барьера Н тем больше, чем меньше отношение кулоновской и поверхностной энергии Е к /Е п в начальном ядре. Это отношение, в свою очередь, увеличивается с увеличением параметра делимости Z 2 /А (). Чем тяжелее ядро, тем меньше высота барьера Н, так как параметр делимости увеличивается с ростом массового числа:

Т.е. согласно капельной модели в природе должны отсутствовать ядра с Z 2 /А > 49, так как они практически мгновенно (за характерное ядерное время порядка 10 -22 с) самопроизвольно делятся. Возможность существования атомных ядер с Z 2 /А > 49 ("остров стабильности") объясняется оболочечной структурой. Зависимость формы, высоты потенциального барьера H и энергии деления E от величины параметра делимости Z 2 /А показана на рис. 5.

Содержание статьи

ЯДЕР ДЕЛЕНИЕ, ядерная реакция, в которой атомное ядро при бомбардировке нейтронами расщепляется на два или несколько осколков. Полная масса осколков обычно меньше суммы масс исходного ядра и бомбардирующего нейтрона. «Недостающая масса» m превращается в энергию E в соответствии с формулой Эйнштейна E = mc 2 , где c – скорость света. Поскольку скорость света очень велика (299 792 458 м/с), небольшой массе соответствует огромная энергия. Эту энергию можно преобразовать в электричество.

Энергия, выделяющаяся при делении ядер, превращается в теплоту при торможении осколков деления. Скорость тепловыделения зависит от числа ядер, делящихся в единицу времени. Когда в небольшом объеме за короткое время происходит деление большого числа ядер, то реакция имеет характер взрыва. Таков принцип действия атомной бомбы. Если же сравнительно небольшое число ядер делится в большом объеме в течение более длительного времени, то результатом будет выделение теплоты, которую можно использовать. На этом основаны атомные электростанции. На атомных электростанциях теплота, выделяющаяся в ядерных реакторах в результате деления ядер, используется для производства пара, который подается на турбины, вращающие электрогенераторы.

Для практического использования процессов деления больше всего подходят уран и плутоний. У них имеются изотопы (атомы данного элемента с различными массовыми числами), которые делятся при поглощении нейтронов даже с очень небольшими энергиями.

Ключом к практическому использованию энергии деления явилось то обстоятельство, что некоторые элементы испускают нейтроны в процессе деления. Хотя при делении ядра один нейтрон поглощается, эта потеря восполняется благодаря возникновению новых нейтронов в процессе деления. Если устройство, в котором происходит деление, обладает достаточно большой («критической») массой, то за счет новых нейтронов может поддерживаться «цепная реакция». Цепной реакцией можно управлять, регулируя число нейтронов, способных вызывать деление. Если оно больше единицы, то интенсивность деления увеличивается, а если меньше единицы – уменьшается.

ИСТОРИЧЕСКАЯ СПРАВКА

История открытия деления ядер берет начало с работы А.Беккереля (1852–1908). Исследуя в 1896 фосфоресценцию различных материалов, он обнаружил, что минералы, содержащие уран, самопроизвольно испускают излучение, вызывающее почернение фотопластинки даже если между минералом и пластинкой поместить непрозрачное твердое вещество. Различные экспериментаторы установили, что это излучение состоит из альфа-частиц (ядер гелия), бета-частиц (электронов) и гамма-квантов (жесткого электромагнитного излучения).

Первое превращение ядер, искусственно вызванное человеком, осуществил в 1919 Э.Резерфорд, который превратил азот в кислород, облучив азот альфа-частицами урана. Эта реакция сопровождалась поглощением энергии, поскольку масса ее продуктов – кислорода и водорода – превышает массу частиц, вступающих в реакцию, – азота и альфа-частиц. Выделение же ядерной энергии впервые удалось осуществить в 1932 Дж.Кокрофту и Э.Уолтону, бомбардировавшим литий протонами. В этой реакции масса вступавших в реакцию ядер была несколько больше массы продуктов, в результате чего и происходило выделение энергии.

В 1932 Дж.Чедвик открыл нейтрон – нейтральную частицу с массой, примерно равной массе ядра атома водорода. Физики всего мира занялись изучением свойств этой частицы. Предполагалось, что лишенный электрического заряда и не отталкиваемый положительно заряженным ядром нейтрон будет с большей вероятностью вызывать ядерные реакции. Более поздние результаты подтвердили эту догадку. В Риме Э.Ферми с сотрудниками подвергли облучению нейтронами почти все элементы периодической системы и наблюдали ядерные реакции с образованием новых изотопов. Доказательством образования новых изотопов служила «искусственная» радиоактивность в форме гамма и бета-излучений.

Первые указания на возможность деления ядер.

Ферми принадлежит открытие многих нейтронных реакций, известных сегодня. В частности, он пытался получить элемент с порядковым номером 93 (нептуний), бомбардируя нейтронами уран (элемент с порядковым номером 92). При этом он регистрировал электроны, испускаемые в результате захвата нейтронов в предполагаемой реакции

238 U + 1 n ® 239 Np + b –,

где 238 U – изотоп урана-238, 1 n – нейтрон, 239 Np – нептуний и b - – электрон. Однако результаты оказались неоднозначными. Чтобы исключить возможность того, что регистрируемая радиоактивность принадлежит изотопам урана или другим элементам, расположенным в периодической системе перед ураном, пришлось проводить химический анализ радиоактивных элементов.

Результаты анализа показали, что неизвестным элементам соответствуют порядковые номера 93, 94, 95 и 96. Поэтому Ферми сделал вывод, что он получил трансурановые элементы. Однако О.Ган и Ф.Штрасман в Германии, проведя тщательный химический анализ, установили, что среди элементов, возникающих в результате облучения урана нейтронами, присутствует радиоактивный барий. Это означало, что, вероятно, часть ядер урана делится на два крупных осколка.

Подтверждение возможности деления.

После этого Ферми, Дж.Даннинг и Дж.Пеграм из Колумбийского университета провели эксперименты, которые показали, что деление ядер действительно имеет место. Деление урана нейтронами было подтверждено методами пропорциональных счетчиков, камеры Вильсона, а также накопления осколков деления. Первый метод показал, что при приближении источника нейтронов к образцу урана испускаются импульсы большой энергии. В камере Вильсона было видно, что ядро урана, бомбардируемое нейтронами, расщепляется на два осколка. Последний метод позволил установить, что, как и предсказывала теория, осколки радиоактивны. Все это вместе взятое убедительно доказывало, что деление действительно происходит, и давало возможность уверенно судить об энергии, выделяющейся при делении.

Поскольку допустимое отношение числа нейтронов к числу протонов в стабильных ядрах уменьшается с уменьшением размеров ядра, доля нейтронов у осколков должна быть меньше, чем у исходного ядра урана. Таким образом, были все основания предполагать, что процесс деления сопровождается испусканием нейтронов. Вскоре это было экспериментально подтверждено Ф. Жолио-Кюри и его сотрудниками: число нейтронов, испускаемых в процессе деления, было больше числа поглощенных нейтронов. Оказалось, что на один поглощенный нейтрон приходится приблизительно два с половиной новых нейтрона. Сразу стали очевидны возможность цепной реакции и перспективы создания исключительно мощного источника энергии и его использования в военных целях. После этого в ряде стран (особенно в Германии и США) в условиях глубокой секретности начались работы по созданию атомной бомбы.

Разработки в период Второй мировой войны.

С 1940 по 1945 направление разработок определялось военными соображениями. В 1941 были получены небольшие количества плутония и установлен ряд ядерных параметров урана и плутония. В США важнейшие необходимые для этого производственные и научно-исследовательские предприятия были в ведении «Манхаттанского военно-инженерного округа», которому 13 августа 1942 был передан «Урановый проект». В Колумбийском университете (Нью-Йорк) группой сотрудников под руководством Э.Ферми и В.Цинна были проведены первые эксперименты, в которых изучалось размножение нейтронов в решетке из блоков диоксида урана и графита – атомном «котле». В январе 1942 эта работа была перенесена в Чикагский университет, где в июле 1942 были получены результаты, показывавшие возможность осуществления самоподдерживающейся цепной реакции. Первоначально реактор работал на мощности 0,5 Вт, но спустя 10 дней мощность была доведена до 200 Вт. Возможность получения больших количеств ядерной энергии была впервые продемонстрирована 16 июля 1945 при взрыве первой атомной бомбы на полигоне в Аламогордо (шт. Нью-Мексико).

ЯДЕРНЫЕ РЕАКТОРЫ

Ядерный реактор – это установка, в которой возможно осуществление управляемой самоподдерживающейся цепной реакции деления ядер. Реакторы можно классифицировать по используемому топливу (делящимся и сырьевым изотопам), по виду замедлителя, по типу тепловыделяющих элементов и по роду теплоносителя.

Делящиеся изотопы.

Имеются три делящихся изотопа – уран-235, плутоний-239 и уран-233. Уран-235 получают разделением изотопов; плутоний-239 – в реакторах, в которых уран-238 превращается в плутоний, 238 U ® 239 U ® 239 Np ® 239 Pu; уран-233 – в реакторах, в которых торий-232 перерабатывается в уран. Ядерное топливо для энергетического реактора выбирается с учетом его ядерных и химических свойств, а также стоимости.

В приводимой ниже таблице представлены основные параметры делящихся изотопов. Полное сечение характеризует вероятность взаимодействия любого типа между нейтроном и данным ядром. Сечение деления характеризует вероятность деления ядра нейтроном. От того, какая доля ядер не участвует в процессе деления, зависит выход энергии на один поглощенный нейтрон. Число нейтронов, испускаемых в одном акте деления, важно с точки зрения поддержания цепной реакции. Число новых нейтронов, приходящихся на один поглощенный нейтрон, важно, поскольку характеризует интенсивность деления. Доля запаздывающих нейтронов, испускаемых после того, как деление произошло, связана с энергией, запасенной в данном материале.

ХАРАКТЕРИСТИКИ ДЕЛЯЩИХСЯ ИЗОТОПОВ

ХАРАКТЕРИСТИКИ ДЕЛЯЩИХСЯ ИЗОТОПОВ

Изотоп

Уран-235

Уран-233

Плутоний-239

Энергия нейтрона

1 МэВ

0,025 эВ

1 МэВ

0,025 эВ

1 МэВ

0,025 эВ

Полное сечение

6,6 ± 0,1

695 ± 10

6,2 ± 0,3

600 ± 10

7,3 ± 0,2

1005 ± 5

Сечение деления

1,25 ± 0,05

581 ± 6

1,85 ± 0,10

526 ± 4

1,8 ± 0,1

751 ± 10

Доля ядер, неучаствующих в делении

0,077 ± 0,002

0,174 ± 0,01

0,057 ± 0,003

0,098 ± 0,004

0,08 ± 0,1

0,37 ± 0,03

Число нейтронов, испускаемых в одном акте деления

2,6 ± 0,1

2,43 ± 0,03

2,65 ± 0,1

2,50 ± 0,03

3,03 ± 0,1

2,84 ± 0,06

Число нейтронов на один поглощенный нейтрон

2,41 ± 0,1

2,07 ± 0,02

2,51 ± 0,1

2,28 ± 0,02

2,07 ± 0,04

Доля запаздывающих нейтронов, %

(0,64 ± 0,03)

(0,65 ± 0,02)

(0,26 ± 0,02)

(0,26 ± 0,01)

(0,21 ± 0,01)

(0,22 ± 0,01)

Энергия деления, МэВ
Все сечения приведены в барнах (10 -28 м 2).

Данные таблицы показывают, что каждый делящийся изотоп имеет свои преимущества. Например, в случае изотопа с наибольшим сечением для тепловых нейтронов (с энергией 0,025 эВ) нужно меньше топлива для достижения критической массы при использовании замедлителя нейтронов. Поскольку наибольшее число нейтронов на один поглощенный нейтрон возникает в плутониевом реакторе на быстрых нейтронах (1 МэВ), в режиме воспроизводства лучше использовать плутоний в быстром реакторе или уран-233 в тепловом реакторе, чем уран-235 в реакторе на тепловых нейтронах. Уран-235 более предпочтителен с точки зрения простоты управления, поскольку у него больше доля запаздывающих нейтронов.

Сырьевые изотопы.

Имеются два сырьевых изотопа: торий-232 и уран-238, из которых получаются делящиеся изотопы уран-233 и плутоний-239. Технология использования сырьевых изотопов зависит от разных факторов, например от необходимости обогащения. В урановой руде содержится 0,7% урана-235, а в ториевой нет делящихся изотопов. Поэтому к торию необходимо добавлять обогащенный делящийся изотоп. Важное значение имеет и число новых нейтронов, приходящееся на один поглощенный нейтрон. С учетом этого фактора приходится отдать предпочтение урану-233 в случае тепловых нейтронов (замедленных до энергии 0,025 эВ), поскольку при таких условиях больше число испускаемых нейтронов, а следовательно, и коэффициент преобразования – число новых делящихся ядер на одно «затраченное» делящееся ядро.

Замедлители.

Замедлитель служит для уменьшения энергии нейтронов, испускаемых в процессе деления, примерно от 1 МэВ до тепловых энергий около 0,025 эВ. Поскольку замедление происходит главным образом в результате упругого рассеяния на ядрах неделящихся атомов, масса атомов замедлителя должна быть как можно меньше, чтобы нейтрон мог передавать им максимальную энергию. Кроме того, у атомов замедлителя должно быть мало (по сравнению с сечением рассеяния) сечение захвата, так как нейтрону приходится многократно сталкиваться с атомами замедлителя, прежде чем он замедляется до тепловой энергии.

Наилучшим замедлителем является водород, поскольку его масса почти равна массе нейтрона и, следовательно, нейтрон при соударении с водородом теряет наибольшее количество энергии. Но обычный (легкий) водород слишком сильно поглощает нейтроны, а потому более подходящими замедлителями, несмотря на несколько большую массу, оказываются дейтерий (тяжелый водород) и тяжелая вода, так как они меньше поглощают нейтроны. Хорошим замедлителем можно считать бериллий. У углерода столь малое сечение поглощения нейтронов, что он эффективно замедляет нейтроны, хотя для замедления в нем требуется гораздо больше столкновений, чем в водороде.

Среднее число N упругих столкновений, необходимое для замедления нейтрона от 1 МэВ до 0,025 эВ, при использовании водорода, дейтерия, беррилия и углерода составляет приблизительно 18, 27, 36 и 135 соответственно. Приближенный характер этих значений обусловлен тем, что из-за наличия химической энергии связи в замедлителе столкновения при энергиях ниже 0,3 эВ вряд ли могут быть упругими. При низких энергиях атомная решетка может передавать энергию нейтронам или изменять эффективную массу в столкновении, нарушая этим процесс замедления.

Теплоносители.

В качестве теплоносителей в ядерных реакторах используются вода, тяжелая вода, жидкий натрий, жидкий сплав натрия с калием (NaK), гелий, диоксид углерода и такие органические жидкости, как терфенил. Эти вещества являются хорошими теплоносителями и имеют малые сечения поглощения нейтронов.

Вода представляет собой прекрасный замедлитель и теплоноситель, но слишком сильно поглощает нейтроны и имеет слишком высокое давление паров (14 МПа) при рабочей температуре 336° С. Лучший из известных замедлителей – тяжелая вода. Ее характеристики близки к характеристикам обычной воды, а сечение поглощения нейтронов – меньше. Натрий является прекрасным теплоносителем, но не эффективен как замедлитель нейтронов. Поэтому его используют в реакторах на быстрых нейтронах, где при делении испускается больше нейтронов. Правда, натрий имеет ряд недостатков: в нем наводится радиоактивность, у него низкая теплоемкость, он химически активен и затвердевает при комнатной температуре. Сплав натрия с калием сходен по свойствам с натрием, но остается жидким при комнатной температуре. Гелий – прекрасный теплоноситель, но у него мала удельная теплоемкость. Диоксид углерода представляет собой хороший теплоноситель, и он широко применялся в реакторах с графитовым замедлителем. Терфенил имеет то преимущество перед водой, что у него низкое давление паров при рабочей температуре, но он разлагается и полимеризуется под действием высоких температур и радиационных потоков, характерных для реакторов.

Тепловыделяющие элементы.

Тепловыделяющий элемент (твэл) представляет собой топливный сердечник с герметичной оболочкой. Оболочка предотвращает утечку продуктов деления и взаимодействие топлива с теплоносителем. Материал оболочки должен слабо поглощать нейтроны и обладать приемлемыми механическими, гидравлическими и теплопроводящими характеристиками. Тепловыделяющие элементы – это обычно таблетки спеченного оксида урана в трубках из алюминия, циркония или нержавеющей стали; таблетки сплавов урана с цирконием, молибденом и алюминием, покрытые цирконием или алюминием (в случае алюминиевого сплава); таблетки графита с диспергированным карбидом урана, покрытые непроницаемым графитом.

Все эти твэлы находят свое применение, но для водо-водяных реакторов наиболее предпочтительны таблетки оксида урана в трубках из нержавеющей стали. Диоксид урана не вступает в реакцию с водой, отличается высокой радиационной стойкостью и характеризуется высокой температурой плавления.

Для высокотемпературных газоохлаждаемых реакторов, по-видимому, весьма подходят графитовые топливные элементы, но у них имеется серьезный недостаток – за счет диффузии или из-за дефектов в графите через их оболочку могут проникать газообразные продукты деления.

Органические теплоносители несовместимы с циркониевыми твэлами и поэтому требуют применения алюминиевых сплавов. Перспективы реакторов с органическими теплоносителями зависят от того, будут ли созданы алюминиевые сплавы или изделия порошковой металлургии, которые обладали бы прочностью (при рабочих температурах) и теплопроводностью, необходимыми для применения ребер, повышающих перенос тепла к теплоносителю. Поскольку теплообмен между топливом и органическим теплоносителем за счет теплопроводности мал, желательно использовать поверхностное кипение для увеличения теплопередачи. С поверхностным кипением будут связаны новые проблемы, но они должны быть решены, если использование органических теплоносителей окажется выгодным.

ТИПЫ РЕАКТОРОВ

Теоретически возможны более 100 разных типов реакторов, различающихся топливом, замедлителем и теплоносителями. В большинстве обычных реакторов в качестве теплоносителя используется вода, либо под давлением, либо кипящая.

Реактор с водой под давлением.

В таких реакторах замедлителем и теплоносителем служит вода. Нагретая вода перекачивается под давлением в теплообменник, где тепло передается воде второго контура, в котором вырабатывается пар, вращающий турбину.

Кипящий реактор.

В таком реакторе кипение воды происходит непосредственно в активной зоне реактора и образующийся пар поступает в турбину. В большинстве кипящих реакторов вода используется и как замедлитель, но иногда применяется графитовый замедлитель.

Реактор с жидкометаллическим охлаждением.

В таком реакторе для переноса теплоты, выделяющейся в процессе деления в реакторе, используется жидкий металл, циркулирующий по трубам. Почти во всех реакторах этого типа теплоносителем служит натрий. Пар, образующийся на другой стороны труб первого контура, подается на обычную турбину. В реакторе с жидкометаллическим охлаждением могут использоваться нейтроны со сравнительно высокой энергией (реактор на быстрых нейтронах) либо нейтроны, замедленные в графите или оксиде бериллия. В качестве реакторов-размножителей более предпочтительны реакторы на быстрых нейтронах с жидкометаллическим охлаждением, поскольку в этом случае отсутствуют потери нейтронов, связанные с замедлением.

Газоохлаждаемый реактор.

В таком реакторе теплота, выделяющаяся в процессе деления, переносится в парогенератор газом – диоксидом углерода или гелием. Замедлителем нейтронов обычно служит графит. Газоохлаждаемый реактор может работать при гораздо более высоких температурах, нежели реактор с жидким теплоносителем, а потому пригоден для системы промышленного теплоснабжения и для электростанций с высоким кпд. Небольшие газоохлаждаемые реакторы отличаются повышенной безопасностью в работе, в частности отсутствием риска расплавления реактора.

Гомогенные реакторы.

В активной зоне гомогенных реакторов используется однородная жидкость, содержащая делящийся изотоп урана. Жидкость обычно представляет собой расплавленное соединение урана. Она закачивается в большой сферический сосуд, работающий под давлением, где в критической массе происходит цепная реакция деления. Затем жидкость подается в парогенератор. Гомогенные реакторы не получили распространения из-за конструктивных и технологических трудностей.

РЕАКТИВНОСТЬ И УПРАВЛЕНИЕ

Возможность самоподдерживающейся цепной реакции в ядерном реакторе зависит от того, какова утечка нейтронов из реактора. Нейтроны, возникающие в процессе деления, исчезают в результате поглощения. Кроме того, возможна утечка нейтронов вследствие диффузии через вещество, аналогичной диффузии одного газа сквозь другой.

Чтобы управлять ядерным реактором, нужно иметь возможность регулировать коэффициент размножения нейтронов k , определяемый как отношение числа нейтронов в одном поколении к числу нейтронов в предыдущем поколении. При k = 1 (критический реактор) имеет место стационарная цепная реакция с постоянной интенсивностью. При k > 1 (надкритический реактор) интенсивность процесса нарастает, а при k r = 1 – (1/k ) называется реактивностью.)

Благодаря явлению запаздывающих нейтронов время «рождения» нейтронов увеличивается от 0,001 с до 0,1 с. Это характерное время реакции позволяет управлять ею с помощью механических исполнительных органов – управляющих стержней из материала, поглощающего нейтроны (B, Cd, Hf, In, Eu, Gd и др.). Постоянная времени регулирования должна быть порядка 0,1 с или больше. Для обеспечения безопасности выбирают такой режим работы реактора, в котором для поддержания стационарной цепной реакции необходимы запаздывающие нейтроны в каждом поколении.

Для обеспечения заданного уровня мощности используются управляющие стержни и отражатели нейтронов, но задачу управления можно значительно упростить правильным расчетом реактора. Например, если реактор спроектировать так, чтобы при увеличении мощности или температуры реактивность уменьшалась, то он будет более устойчивым. Например, при недостаточном замедлении из-за повышения температуры расширяется вода в реакторе, т.е. уменьшается плотность замедлителя. В результате усиливается поглощение нейтронов в уране-238, поскольку они не успевают эффективно замедлиться. В некоторых реакторах используется фактор увеличения утечки нейтронов из реактора вследствие уменьшения плотности воды. Еще один способ стабилизации реактора основан на нагревании «резонансного поглотителя нейтронов», такого, как уран-238, который тогда сильнее поглощает нейтроны.

Системы безопасности.

Безопасность реактора обеспечивается тем или иным механизмом его остановки в случае резкого увеличения мощности. Это может быть механизм физического процесса или действие системы управления и защиты, либо то и другое. При проектировании водо-водяных реакторов предусматриваются аварийные ситуации, связанные с поступлением холодной воды в реактор, падением расхода теплоносителя и слишком большой реактивностью при пуске. Поскольку интенсивность реакции возрастает с понижением температуры, при резком поступлении в реактор холодной воды повышаются реактивность и мощность. В системе защиты обычно предусматривается автоматическая блокировка, предотвращающая поступление холодной воды. При снижении расхода теплоносителя реактор перегревается, даже если его мощность не увеличивается. В таких случаях необходим автоматический останов. Кроме того, насосы теплоносителя должны быть рассчитаны на подачу охлаждающего теплоносителя, необходимую для остановки реактора. Аварийная ситуация может возникнуть при пуске реактора со слишком высокой реактивностью. Из-за низкого уровня мощности реактор не успевает нагреться настолько, чтобы сработала защита по температуре, пока не оказывается слишком поздно. Единственная надежная мера в таких случаях – осторожный пуск реактора.

Избежать перечисленных аварийных ситуаций довольно просто, если руководствоваться следующим правилом: все действия, способные увеличить реактивность системы, должны выполняться осторожно и медленно. Самое важное в вопросе о безопасности реактора – это абсолютная необходимость длительного охлаждения активной зоны реактора после прекращения в нем реакции деления. Дело в том, что радиоактивные продукты деления, остающиеся в топливных кассетах, выделяют тепло. Оно гораздо меньше тепла, выделяющегося в режиме полной мощности, но его достаточно, чтобы в отсутствие необходимого охлаждения расплавить твэлы. Кратковременное прекращение подачи охлаждающей воды привело к значительному повреждению активной зоны и аварии реактора в Три-Майл-Айленде (США). Разрушение активной зоны реактора – это минимальный ущерб в случае подобной аварии. Хуже, если произойдет утечка опасных радиоактивных изотопов. Большинство промышленных реакторов снабжено герметическими страховочными корпусами, которые должны в случае аварии предотвратить выброс изотопов в окружающую среду.

В заключение отметим, что возможность разрушения реактора в значительной степени зависит от его схемы и конструкции. Реакторы могут быть спроектированы таким образом, что снижение расхода теплоносителя не будет приводить к большим неприятностям. Таковы различные типы газоохлаждаемых реакторов.

Деление ядер урана происходит следующим образом: вначале в ядро попадает нейтрон, словно пуля в яблоко. В случае с яблоком пуля проделала бы в нем дыру, либо разнесла бы на куски. Когда же нейтрон попадает в ядро, то он захватывается ядерными силами. Нейтрон, как известно нейтрален, поэтому он не отталкивается электростатическими силами.

Как происходит деление ядра урана

Итак, попав в состав ядра, нейтрон нарушает равновесие, и ядро возбуждается. Оно растягивается в стороны подобно гантели или знаку «бесконечность»: . Ядерные силы, как известно, действуют на расстоянии, соизмеримом с размерами частиц. Когда ядро растягивается, то действие ядерных сил становится несущественным для крайних частиц «гантели», в то время как электрические силы действуют на таком расстоянии очень мощно, и ядро попросту разрывается на две части. При этом еще излучается два-три нейтрона.

Осколки ядра и выделившиеся нейтроны разлетаются на огромной скорости в разные стороны. Осколки довольно быстро тормозятся окружающей средой, однако их кинетическая энергия огромна. Она преобразуется во внутреннюю энергию среды, которая нагревается. При этом величина выделяющейся энергии огромна. Энергия, полученная при полном делении одного грамма урана примерно равна энергии, получаемой от сжигания 2,5 тонн нефти.

Цепная реакция деления несколькоих ядер

Мы рассмотрели деление одного ядра урана. При делении выделилось несколько (чаще всего два-три) нейтронов. Они на огромной скорости разлетаются в стороны и могут запросто попасть в ядра других атомов, вызвав в них реакцию деления. Это и есть цепная реакция.

То есть полученные в результате деления ядра нейтроны возбуждают и принуждают делиться другие ядра, которые в свою очередь сами излучают нейтроны, которые продолжают стимулировать деление дальше. И так до тех пор, пока не произойдет деление всех ядер урана в непосредственной близости.

При этом цепная реакция может происходить лавинообразно , например, в случае взрыва атомной бомбы. Количество делений ядер увеличивается в геометрической прогрессии за короткий промежуток времени. Однако цепная реакция может происходить и с затуханием .

Дело в том, что не все нейтроны встречают на своем пути ядра, которые они побуждают делиться. Как мы помним, внутри вещества основной объем занимает пустота между частицами. Поэтому некоторые нейтроны пролетают все вещество насквозь, не столкнувшись по пути ни с чем. И если количество делений ядер уменьшается со временем, то реакция постепенно затухает.

Ядерные реакции и критическая масса урана

От чего зависит тип реакции? От массы урана. Чем больше масса - тем больше частиц встретит на своем пути летящий нейтрон и шансов попасть в ядро у него больше. Поэтому различают «критическую массу» урана - это такая минимальная масса, при которой возможно протекание цепной реакции.

Количество образовавшихся нейтронов будет равно количеству улетевших вовне нейтронов. И реакция будет протекать с примерно одинаковой скоростью, пока не выработается весь объем вещества. Это используют на практике на атомных электростанциях и называют управляемой ядерной реакцией.

Изучение взаимодействия нейтронов с веществом привело к открытию ядерных реакций нового типа. В 1939 г. О. Ган и Ф. Штрассман исследовали химические продукты, получающиеся при бомбардировке нейтронами ядер урана. Среди продуктов реакции был обнаружен барий - химический элемент с массой много меньше, чем масса урана. Задача была решена немецкими физиками Л. Мейтнерома и О. Фришем, показавшими, что при поглощении нейтронов ураном происходит деление ядра на два осколка:

где k > 1.

При делении ядра урана тепловой нейтрон с энергией ~ 0,1 эВ освобождает энергию ~ 200 МэВ. Существенным моментом является то, что этот процесс сопровождается появлением нейтронов, способных вызывать деление других ядер урана, – цепная реакция деления . Таким образом, один нейтрон может дать начало разветвленной цепи делений ядер, причем число ядер, участвующих в реакции деления будет экспоненциально возрастать. Открылись перспективы использования цепной реакции деления в двух направлениях :

· управляемая ядерная реакция деления – создание атомных реакторов;

· неуправляемая ядерная реакция деления – создание ядерного оружия.

В 1942 г. в США был построен первый ядерный реактор. В СССР первый реактор был запущен в 1946 г. В настоящее время тепловая и электрическая энергия вырабатывается в сотнях ядерных реакторов, работающих в различных странах мира.

Как видно из рис. 4.2, с ростом значения А удельная энергия связи увеличивается вплоть до А » 50. Это поведение можно объяснить сложением сил; энергия связи отдельного нуклона усиливается, если его притягивают не один или два, а несколько других нуклонов. Однако в элементах со значениями массового числа больше А » 50 удельная энергия связи постепенно уменьшается с ростом А. Это связано, с тем, что ядерные силы притяжения являются короткодействующими радиусом действия порядка размеров отдельного нуклона. За пределами этого радиуса преобладают силы электростатического отталкивания. Если два протона удаляются более чем на 2,5×10 - 15 м, то между ними преобладают силы кулоновского отталкивания, а не ядерного притяжения.

Следствием такого поведения удельной энергии связи в зависимости от А является существование двух процессов - синтеза и деления ядер . Рассмотрим взаимодействие электрона и протона. При образовании атома водорода высвобождается энергия 13,6 эВ и масса атома водорода оказы­вается на 13,6 эВ меньше суммы масс свободного электрона и протона. Аналогично, масса двух легких ядер превышает мaccу после их соединения на DМ . Если их соединить, то они сольются с выделением энергии DМс 2 . Этот процесс называется синтезом ядер . Разность масс может превышать 0,5 %.

Если расщепляется тяжелое ядро на два более легких ядра, то их масса будет меньше массы родительского ядра на 0,1 %. У тяжелых ядер существует тенденция к делению на два более легких ядра с выделением энергии . Энергия атомной бомбы и ядерного реактора представляет собой энергию , высвобождающуюся при делении ядер . Энергия водородной бомбы - это энергия, выделяющаяся при ядерном синтезе. Альфа-распад можно рассматривать как сильно асимметричное деление, при котором родительское ядро М расщепляется на маленькую альфа-частицу и большое остаточное ядро . Альфа-распад возможен, только если в реакции

масса М оказывается больше суммы масс и альфа-частицы. У всех ядер с Z > 82 (свинец) .При Z > 92 (уран) полупериоды альфа-распада оказываются значительно длиннее возраста Земли, и такие элементы не встречаются в природе. Однако их можно создать искусственно. Например, плутоний (Z = 94) можно получить из урана в ядерном реакторе. Эта процедура стала обычной и обходится всего в 15 долларов за 1 г. До сих пор удалось получить элементы вплоть до Z = 118, однако гораздо более дорогой ценой и, как правило, в ничтожных количествах. Можно надеяться, что радиохимики научатся получать, хотя и в небольших количествах, новые элементы сZ > 118.

Если бы массивное ядро урана удалось разделить на две группы нуклонов, то эти группы нуклонов перестроились бы в ядра с более сильной связью. В процессе перестройки выделилась бы энергия. Спонтанное деление ядер разрешено законом сохранения энергии. Однако потенциальный барьер в реакции деления у встречающихся в природе ядер настолько высок, что вероятность спонтанного деления оказывается много меньше вероятности альфа-распада. Период полураспада ядер 238 U относительно спонтанного деления составляет 8×10 15 лет. Это более чем в миллион раз превышает возраст Земли. Если нейтрон сталкивается с тяжелымядром, то оно может перейти на более высокий энергетический уровень вблизи вершины электростатического потенциального барьера, в результате возрастет вероятность деления. Ядро в возбужденном состоянии может обладать значительным моментом импульса и приобрести овальную форму. Участки на периферии ядра легче проникают сквозь барьер, поскольку они частично уже находятся за барьером. У ядра овальной формы роль барьера еще больше ослабляется. При захвате ядром или медленного нейтрона образуются состояния с очень короткими временами жизни относительно деления. Разность масс ядра урана и типичных продуктов деления такова, что в среднем при делении урана высвобождается энергия 200 МэВ. Масса покоя ядра урана 2,2×10 5 МэВ. В энергию превращается около 0,1 % этой массы, что равно отношению 200 МэВ к величине 2,2×10 5 МэВ.

Оценка энергии , освобождающейся при делении , может быть получена из формулы Вайцзеккера :

При делении ядра на два осколка изменяется поверхностная энергия и кулоновская энергия , причем поверхностная энергия увеличивается, а кулоновская энергия уменьшается. Деление возможно в том случае, когда энергия, высвобождающаяся при делении, Е > 0.

.

Здесь A 1 = A /2, Z 1 = Z /2. Отсюда получим, что деление энергетически выгодно, когда Z 2 /A > 17. Величина Z 2 /A называется параметром делимости . Энергия Е , освобождающаяся при делении, растет с увеличением Z 2 /A .

В процессе деления ядро изменяет форму - последовательно проходит черезследующие стадии (рис. 9.4): шар, эллипсоид, гантель, два грушевидных осколка, два сферических осколка.

После того как деление произошло, и осколки находятся друг от друга на расстоянии много большем их радиуса, потенциальную энергию осколков, определяемую кулоновским взаимодействием между ними, можно считать равной нулю.

Вследствие эволюции формы ядра, изменение его потенциальной энергии определяется изменением суммы поверхностной и кулоновской энергий . Предполагается, что объем ядра в процессе деформации остается неизменным. Поверхностная энергия при этом возрастает, так как увеличивается площадь поверхности ядра. Кулоновская энергия уменьшается, так как увеличивается среднее расстояние между нуклонами. В случае малых эллипсоидальных деформаций рост поверхностной энергии происходит быстрее, чем уменьшение кулоновской энергии.

В области тяжелых ядер сумма поверхностной и кулоновской энергий увеличивается с увеличением деформации. При малых эллипсоидальных деформациях рост поверхностной энергии препятствует дальнейшему изменению формы ядра, а следовательно и делению. Наличие потенциального барьера препятствует мгновенному самопроизвольному делению ядер. Для того чтобы ядро мгновенно разделилось, ему необходимо сообщить энергию, превышающую высоту барьера деления Н .

Высота барьера Н тем больше, чем меньше отношение кулоновской и поверхностной энергии в начальном ядре. Это отношение, в свою очередь, увеличивается с увеличением параметра делимости Z 2 /А. Чем тяжелее ядро, тем меньше высота барьера Н , так как параметр делимости увеличивается с ростом массового числа:

Более тяжелым ядрам, как правило, нужно сообщить меньшую энергию, чтобы вызвать деление. Из формулы Вайцзеккера следует, что высота барьера деления обращается в нуль при . Т.е. согласно капельной модели в природе должны отсутствовать ядра с , так как они практически мгновенно (за характерное ядерное время порядка 10 –22 с) самопроизвольно делятся. Существование атомных ядер с («остров стабильности ») объясняется оболочечной структурой атомных ядер. Самопроизвольное деление ядер с , для которых высота барьера Н не равна нулю, с точки зрения классической физики невозможно. С точки зрения квантовой механики такое деление возможно в результате прохождения осколков через потенциальный барьер и носит название спонтанного деления . Вероятность спонтанного деления растет с увеличением параметра делимости , т.е. с уменьшением высоты барьера деления.

Вынужденное деление ядер с может быть вызвано любыми частицами: фотонами, нейтронами, протонами, дейтронами, α-частицами и т.д., если энергия, которую они вносят в ядро, достаточна для преодоления барьера деления.

Массы осколков, образующихся при делении тепловыми нейтронами, не равны. Ядро стремится разделиться таким образом, чтобы основная часть нуклонов осколка образовала устойчивый магический остов. На рис. 9.5 приведено распределение по массам при делении . Наиболее вероятная комбинация массовых чисел - 95 и 139.

Отношение числа нейтронов к числу протонов в ядре равно 1,55, в то время как у стабильных элементов, имеющих массу, близкую к массе осколков деления, это отношение 1,25 - 1,45. Следовательно, осколки деления сильно перегружены нейтронами и неустойчивы к β-распаду - радиоактивны.

В результате деления высвобождается энергия ~ 200 МэВ. Около 80 % ее приходится на энергию осколков. За один акт деления образуется более двух нейтронов деления со средней энергией ~ 2 МэВ.

В 1 г любого вещества содержится . Деление 1 г урана сопровождается выделением ~ 9×10 10 Дж. Это почти в 3 млн раз превосходит энергию сжигания 1 г угля (2,9×10 4 Дж). Конечно, 1 г урана обходится значительно дороже 1 г угля, ностоимость 1 Дж энергии, полученной сжиганием угля, оказывается в 400 раз выше, чем в случае уранового топлива. Выработка 1 кВт×ч энергии обходилась в 1,7 цента на электростанциях, работающих на угле, и в 1,05 цента на ядерных электростанциях.

Благодаря цепной реакции процесс деления ядер можно сделать самоподдерживающимся . При каждом делении вылетают 2 или 3 нейтрона (рис. 9.6). Если одному из этих нейтронов удастся вызвать деление другого ядра урана, то процесс будет самоподдерживающимся.

Совокупность делящегося вещества, удовлетворяющая этому требованию, называется критической сборкой . Первая такая сборка, названная ядерным реактором , была построена в 1942 г. под руководством Энрико Ферми на территории Чикагского университета. Первый ядерный реактор был запущен в 1946 г. под руководством И. Курчатова в Москве. Первая атомная электростанция мощностью 5 МВт была пущена в СССР в 1954 г. в г. Обнинске (рис. 9.7).

Массу и можно также сделать надкритической . В этом случае возникающие при делении нейтроны будут вызывать несколько вторичных делений. Поскольку нейтроны движутся со скоростями, превышающими 10 8 см/с, надкритическая сборка может полностью прореагировать (или разлететься) быстрее, чем за тысячную долю секунды. Такое устройство называется атомной бомбой . Ядерный заряд из плутония или урана переводят в надкритическое состояние обычно с помощью взрыва. Подкритическую массу окружают химической взрывчаткой. При ее взрыве плутониевая или урановая масса подвергается мгновенному сжатию. Поскольку плотность сферы при этом значительно возрастает, скорость поглощения нейтронов оказывается выше скорости потери нейтронов за счет их вылета наружу. В этом и заключается условие надкритичности.

На рис. 9.8 изображена схема атомной бомбы «Малыш», сброшенной на Хиросиму. Ядерной взрывчаткой в бомбе служил , разделенный на две части, масса которых была меньше критической. Необходимая для взрыва критическая масса создавалась в результате соединения обеих частей «методом пушки» с помощью обычной взрывчатки.

При взрыве 1 т тринитротолуола (ТНТ) высвобождается 10 9 кал, или 4×10 9 Дж. При взрыве атомной бомбы, расходующей 1 кг плутония , высвобождается около 8×10 13 Дж энергии.

Или это почти в 20 000 раз больше, чем при взрыве 1 т ТНТ. Такая бомба называется 20-килотонной бомбой. Современные бомбы мощностью в мегатонны в миллионы раз мощнее обычной ТНТ-взрывчатки.

Производство плутония основано на облучении 238 U нейтронами, ведущем к образованию изотопа 239 U, который в результате бета-распада превращается в 239 Np, а затем после еще одного бета-распада в 239 Рu. При поглощении нейтрона с малой энергией оба изотопа 235 U и 239 Рu испытывают деление. Продукты деления характеризуются более сильной связью (~ 1 МэВ на нуклон), благодаря чему в результате деления высвобождается примерно 200 МэВ энергии.

Каждый грамм израсходованного плутония или урана порождает почти грамм радиоактивных продуктов деления, обладающих огромной радиоактивностью.

Для просмотра демонстраций щелкните по соответствующей гиперссылке: