Химия и пластмассы

Низкотемпературное радиаторное отопление. Как правильно рассчитать мощность и количество секций радиаторов отопления

В современном строительстве все чаще применяются решения, базирующиеся на экологически чистых источниках возобновляемой энергии. Низкотемпературное отопление часто становится приоритетом. В связи с этим все шире стали применяться конденсационные котлы или тепловые насосы в соединении с хорошим утеплением объектов. Это не только снижение затрат на эксплуатацию и большая экономия тепловой энергии - достаточно, чтобы температура воды в инсталляции вместо 70ºC достигала 50ºC - но также это гарантия теплового комфорта. Однако, одного теплового насоса не достаточно, в современной, низкотемпературной инсталляции следует применить низкотемпературные радиаторы, которые отличаются наибольшей поверхностью теплообмена, эмиссией тепла с помощью конвекции и/или циркуляции, поддерживаемой вентилятором. Немаловажное значение имеет минимально возможный вес системы передачи тепла - преимущества которой можно оценить в переходные периоды.

Все радиаторные системы REGULUS-system отличаются очень большой поверхностью теплообмена. Прекрасно вписываются в вышеупомянутые условия, вполне соответствуя требованиям экономии энергии в строительстве и обеспечивая тепловой комфорт. Имеют поверхность контакта с нагреваемым воздухом на 50% большую, чем панельные радиаторы того же размера. Большая поверхность контакта означает более эффективное нагревание при низких параметрах теплового агента. Это также потому, что «регулусы» - это низкотемпературные радиаторы. Благодаря своему специфическому строению они не находят места в актуально принятой терминологии радиаторов. Не «ребряки», не «панели» и не «конвекторы» по определению. Состоят из двух систем: медной водяной системы и алюминиевой системы теплообмена. Их строение напоминает автомобильный радиатор. В медном змеевике течет инсталляционная вода, а тепло передается в окружающую среду через алюминиевые эмиттеры тепла. Нагревание помещение происходит смешанным способом с помощью широкоугольного теплового излучения, исходящего от рифленой поверхности и путем конвекции. Большая доля излучения от рифленой поверхности радиатора приводит к равномерному распределению тепла в помещении.

В системах, питающихся фактором с низкими параметрами в переходные периоды, когда необходимостью является быстрое повышение или понижение температуры, хорошо сработает отопительная система с малой общей массой, чем и отличаются радиаторы REGULUS-system. Большая общая масса системы теплообмена отличается высокой тепловой инертностью, что и приводит к систематическому перегреванию или недостаточному нагреванию помещения. Быстрая задержка нагревания важна не только для оптимизации затрат на отопление, но также имеет ключевое значение для теплового комфорта. При внезапном усилении яркости солнечного света в переходные периоды или при возникновении неожиданного притока тепла, соответственно управляемая инсталляция с «регулусами» быстро перестает греть и так же быстро начинает работать, делая отопление экономичным и комфортным.

Отопительная система с малой общей массой делает возможным не только быстрый доступ пользователя к теплу, но и получение тепла в необходимом количестве. Такое отопление просто запустить и остановить, так как инертность системы - минимальная. Система с малой массой может работать практически круглый год, так как затраты на запуск отопления на пятнадцать или пятьдесят минут, с целью коррекции температуры, очень низкие.

В предложении REGULUS-system также доступны версии низкотемпературных радиаторов, значительно улучшающих их эффективность в системах с экологически чистыми источниками тепла, такими как конденсационные котлы, тепловые насосы, системы с несколькими источниками тепла и буфером ц.о. Одной из таких версий является настенный радиатор, усиленный вентилятором. Вентилятор охлаждает тепловой фактор в радиаторе, тем самым увеличивает количество тепла, отдаваемого радиатором помещению - то есть, можно увеличить мощность без изменения размеров радиатора.

E-VENT строение напоминает другие настенные радиаторы REGULUS-system - с той разницей, что в нижней части пакета алюминиевой ламели есть вырез, а в нем магниты, позволяющие прикрепить и снять вентилятор (или вентиляторы, в случае большой длины радиатора). Благодаря вентилятору, устройство нагревает с переменной мощностью, соответствующей требованиям пользователя, повышается его мощность, также существует возможность управления динамикой нагревания.

Может работать в инсталляции также после выключения или деинсталляции, в таком случае работает в режиме стандартного водяного радиатора. Благодаря простоте монтажа и демонтажа вентилятора, радиатор E-VENT прекрасно проявит свои качества в инсталляции, снабженной стандартным котлом ц.о., работающим в высоких параметрах, который в будущем будет заменен на экологически чистый, низкотемпературный источник тепла (конденсационный котел, насос ц.о.). На первом этапе радиатор будет работать без вентилятора, а после смены источника тепла на низкотемпературный уже с вентилятором.


В низкотемпературных инсталляциях прекрасно сдает экзамен другой низкотемпературный радиатор REGULUS-system под названием , являющийся альтернативой стальным, трехпанельным радиаторам. Dubel состоит из двух корпусов радиаторов типа SOLLARIUS (с плоской верхней крышкой), параллельно соединенных в общем корпусе - толщина 18 см. В предложении необычно редкое предложение на рынке: радиатор высотой всего лишь 12 см (+ монтажный стойки - 8 см высоты) для установки в полу в вертикальной позиции. Это низкотемпературный радиатор, который, несмотря на бытующее мнение, при своей относительно большой мощности имеет небольшие размеры. Эта конфигурация работает не только в инсталляциях с тепловыми насосами, но и позволяет ограничить габариты применяемых настенных радиаторов и может применяться в помещениях, потребляющих большое количество тепла.


Все радиаторы REGULUS-system можно применять без ограничений, в открытых и закрытых системах ц.о., а также в инсталляции любого типа, выполненной из меди, пластика или, традиционно, из стали. Радиаторы прекрасно работают совместно с низкотемпературными источниками тепла, конденсационными и твердотопливными котлами, а также с тепловыми насосами. Строение радиаторов предусматривает защиту от коррозии и и изменений давления в инсталляции, значительно продлевая время их эксплуатации. Устройства имеют допуск к применению на территории ЕС.

РЕИМУЩЕСТВА НИЗКОТЕМПЕРАТУРНЫХ РАДИАТОРОВ REGULUS-system

  • экономичное экономичное отопление
  • обеспечение теплового комфорта
  • точная поставка тепла
  • динамичное отапление - быстрая реакция на потребности в тепле
  • равномерное распределение температуры
  • температура безопасного прикосновения
  • большая мощность без значительного увеличения габаритов
  • могут работать совместно с любым источником тепла.
  • гарантия 25 лет

Считаются атрибутами отопительных систем с высоким параметром температуры. Но основы, на которых строилась такие представления, устарели. Экономия металла и теплоизоляции не ставится нынче приоритетнее экономии энергоресурсов. А характеристики нынешних радиаторов позволяют рассуждать не только о вероятности их применения в низкотемпературных коммуникациях, но и о преимуществах такого вывода. Это обосновывают научные изыскания, в течение пары лет реализовывающиеся по предложению компании «Rettig ICC», обладателя брендов «Purmo», «Radson», «Vogel&Noot;», «Finimetal, Myson».Уменьшение температуры теплоносителя - базовая тенденция прогресса отопительной техники прошедших лет в европейских странах. Это реализовывалось по мере совершенствования теплоизоляции зданий, улучшении отопительного оборудования. В 1980-х обычные параметры были сбавлены до 75/65 ºC (подача/обратка). Основным плюсом этого стало уменьшение утрат при формировании, транспортировке и распределении тепла, а также безопасность для потребителей. Не стоит на месте и прогресс относительно водоснабжения. Для того чтобы оградить внутренние поверхности труб от коррозии и высокого уровня износа, используют затвор avk. Это некий элемент трубопроводной арматуры, основные части которого имеют форму диска. Высоко эксплуатационные характеристики затвор avk обеспечиваются углеродистой никелированной сталью из которой он выполнен, а также эпоксидным покрытием. Используется затвор avk для воды и нейтральных жидкостей.

С увеличением популярности напольного и других типов панельного обогрева в системах, где они используются, температура подачи понижена до уровня 55 ºC, что учтено создателями теплогенераторов, балансирующей арматуры и т.д.Сейчас температура подачи в ультра технологичных системах отопления может быть 45 и 35 ºC. Толчек к достижению таких параметров - возможность более эффективно эксплуатировать такие источники, как тепловые помпы и конденсационные котлы. При температуре носителя второстепенного контура 55/45 ºC, элемент эффективности COP для тепловой помпы категории «грунт-вода» составляет 3,6, а при 35/28 ºC уже - 4,6 (при работе обогрева). А использование котлов в конденсационном состоянии, требующих охлаждений дымовых газов водой из обратки ниже «метки росы» (при сжигании топлива - 47 ºC), дает бонус в КПД порядка 15 % и выше. Таким образом, уменьшение температуры носителя дает значительную экономию ресурсов и сокращение выхода углекислого газа в воздух.До сих пор базовым решением, снабжающий теплом помещения при малой температуре носителя, являлись «теплый пол» и конвекторы с медно-алюминиевыми обменниками.

Инициированные «Rettig ICC» изучения позволили добавить в этот разряд стальные панельные радиаторы. При содействии некоторых научных учреждений, включая заведения Хельсинки и Дрездена, они были испытаны в различных исследуемых условиях. К «доказательной базе» добавлены и результаты иных работ по функционированию современных коммуникаций отопления.В конце января прошлого года, результаты исследований переданы журналистам лидирующих изданий Европы на мероприятии, состоявшемся в центре «Purmo-Radson» в Эрпфендорфе.

Наверняка все вы неоднократно слышали от производителей стальных панельных радиаторов (Purmo, Dianorm, Kermi и т.д.) о небывалой эффективности их оборудования в современных высокоэффективных низкотемпературных системах отопления. Но никто не удосужился объяснить - откуда же берётся эта эффективность?

Для начала давайте рассмотрим вопрос: «Для чего нужны низкотемпературные системы отопления?» Они нужны для того, чтобы можно было использовать современные высокоэффективные источники тепловой энергии, такие как конденсационные котлы и тепловые насосы. В силу специфики данного оборудования температура теплоносителя в этих системах колеблется в пределах 45-55 °C. Тепловые насосы физически не могут поднять температуру теплоносителя выше. А конденсационные котлы экономически нецелесообразно разогревать выше температуры конденсации пара 55 °С ввиду того, что при превышении этой температуры они перестают быть конденсационными и работают как традиционные котлы с традиционным КПД порядка 90 %. Кроме того, чем ниже температура теплоносителя, тем дольше проработают полимерные трубы, ведь при температуре 55 °С они деградируют 50 лет, при температуре 75 °С - 10 лет, а при 90 °С - всего три года. В процессе деградации трубы становятся хрупкими и ломаются в нагруженных местах.

С температурой теплоносителя определились. Чем она ниже (в допустимых пределах), тем эффективнее расходуются энергоносители (газ, электричество), и тем дольше работает труба. Итак, тепло из энергоносителей выделили, теплоносителю передали, в отопительный прибор доставили, теперь тепло нужно передать от отопительного прибора в помещение.

Как все мы знаем, тепло от отопительных приборов в помещение поступает двумя способами. Первый - это тепловое излучение. Второй - это теплопроводность, переходящая в конвекцию.

Давайте рассмотрим каждый способ повнимательнее.

Всем известно, что тепловое излучение - это процесс переноса тепла от более нагретого тела к менее нагретому телу посредством электромагнитных волн, то есть, по сути, это перенос тепла обычным светом, только в инфракрасном диапазоне. Именно так тепло от Солнца достигает Земли. Из-за того, что тепловое излучение по сути является светом, то к нему применимы те же физические законы, что и для света. А именно: твёрдые тела и пар практически не пропускают излучение, а вакуум и воздух, наоборот, прозрачны для тепловых лучей. И только наличие в воздухе концентрированных водяных паров или пыли уменьшает прозрачность воздуха для излучения, и часть лучистой энергии поглощается средой. Поскольку воздух в наших домах не содержит ни пара, ни плотной пыли, то очевидно, что для тепловых лучей его можно считать абсолютно прозрачным. То есть излучение не задерживается и не поглощается воздухом. Воздух не греется излучением.

Лучистый теплообмен идёт до тех пор, пока существует разница между температурами излучающей и поглощающей поверхностей.

Теперь поговорим про теплопроводность с конвекцией. Теплопроводность - это перенос тепловой энергии от нагретого тела к холодному телу при непосредственном их контакте. Конвекция - это вид теплопередачи от нагретых поверхностей за счёт движения воздуха, создаваемого архимедовой силой. То есть нагретый воздух, становясь легче, под действием архимедовой силы стремится вверх, а его место возле источника тепла занимает холодный воздух. Чем выше разница между температурами нагретого и холодного воздуха, тем больше подъёмная сила, которая выталкивает нагретый воздух вверх.

В свою очередь, конвекции мешают различные преграды, такие как подоконники, шторы. Но самое главное - это то, что конвекции воздуха мешает сам воздух, а точнее, его вязкость. И если в масштабах помещения воздух практически не мешает конвективным потокам, то, будучи «зажатым» между поверхностями, он создаёт существенное сопротивление перемешиванию. Вспомните оконный стеклопакет. Слой воздуха между стёклами тормозит сам себя, и мы получаем защиту от уличного холода.

Ну, а теперь, когда мы разобрались в способах теплопередачи и их особенностях, давайте посмотрим на то, какие процессы проходят в отопительных приборах при разных условиях. При высокой температуре теплоносителя все отопительные приборы греют одинаково хорошо - мощная конвекция, мощное излучение. Однако при снижении температуры теплоносителя всё меняется.

Конвектор. Самая горячая его часть - труба с теплоносителем - находится внутри отопительного прибора. От неё греются ламели, и чем дальше от трубы, тем ламели холоднее. Температура ламелей практически равна температуре окружающей среды. Излучения от холодных ламелей нет. Конвекции при низкой температуре мешает вязкость воздуха. Тепла от конвектора крайне мало. Чтобы он грел, нужно либо повышать температуру теплоносителя, что сразу снизит эффективность системы, либо выдувать из него тёплый воздух искусственно, например, специальными вентиляторами.

Алюминиевый (секционный биметаллический) радиатор конструктивно очень похож на конвектор. Самая горячая его часть - коллекторная труба с теплоносителем - находится внутри секций отопительного прибора. От неё греются ламели, и чем дальше от трубы, тем ламели холоднее. Излучения от холодных ламелей нет. Конвекции при температуре 45-55 °С мешает вязкость воздуха. В итоге тепла от такого «радиатора» в нормальных условиях эксплуатации крайне мало. Чтобы он грел, нужно повышать температуру теплоносителя, но оправдано ли это? Таким образом, мы практически повсеместно сталкиваемся с ошибочным расчётом количества секций в алюминиевом и биметаллическом приборах, которые основываются на подборе «по номинальному температурному потоку», а не исходя из реальных температурных условий эксплуатации.

Самая горячая часть стального панельного радиатора - внешняя панель с теплоносителем - находится снаружи отопительного прибора. От неё греются ламели, и чем ближе к центру радиатора, тем ламели холоднее. А излучение от наружной панели идёт всегда

Стальной панельный радиатор. Самая горячая его часть - внешняя панель с теплоносителем - находится снаружи отопительного прибора. От неё греются ламели, и чем ближе к центру радиатора, тем ламели холоднее. Конвекции при низкой температуре мешает вязкость воздуха. А что с излучением?

Излучение от наружной панели идёт до тех пор, пока существует разница между температурами поверхностей отопительного прибора и окружающих предметов. То есть всегда.

Кроме радиатора данное полезное свойство присуще и радиаторным конвекторам, таким как, например, Purmo Narbonne. В них теплоноситель также протекает снаружи по прямоугольным трубам, а ламели конвективного элемента располагаются внутри прибора.

Применение современных энергоэффективных отопительных приборов способствует снижению затрат на отопление, а широкий ряд типоразмеров панельных радиаторов от ведущих производителей с лёгкостью помогут воплотить в жизнь проекты любой сложности

Вопрос, что такое низкотемпературное отопление, возникает у многих людей. Обычно такие системы характеризуются прогревом теплоносителя до 60 градусов по Цельсию. При этом, на входе в систему он имеет температуру около 40 градусов, а на выходе - около 60. Рассмотрим, как это достигается.

Температурный режим отопительных систем может быть описан тремя характеристиками:

  • . Температура теплоносителя на входе в котел.
  • . Температура на выходе.
  • . Температура в обогреваемом помещении.

Данные котла должны указываться в техпаспорте изделий именно в этой последовательности. Отопительные системы традиционного типа (включая и центральное отопление), были рассчитаны таким образом, что на выходе из нагревателя вода должна иметь температуру около 80 градусов при температуре в 60 градусов на входе. Однако в наши дни такие показатели являются несколько устаревшими. Температура может быть снижена или теплосетью, или же самим пользователем. Европейские же котлы, которые сегодня практически полностью вытеснили советские отопительные аналоги, работают по несколько иным схемам.

По европейскому стандарту нормальный режим работы систем отопления предполагает температуру 60-75 градусов по Цельсию. Но здесь же говорится о понятии так называемого «мягкого тепла», предполагающего параметры системы с температурой до 55 градусов. И именно этот режим может стать нормативным в недалеком будущем, если учесть все ужесточающиеся требования к экономии. Таким образом, монтаж теплых полов становится все более актуальным.

О «теплых полах», пожалуй, слышали все. Именно эта система выступает одним из наиболее ярких примеров низкотемпературного отопления. К тому же, большинство владельцев частного дома сегодня уменьшают температуру котлов до «единички», дабы довести температуру теплоносителей до 50-60 градусов.

Какие преимущества есть у низкотемпературного отопления

При установке системы водяных теплых полов , вы получаете следующие преимущества:

  1. 1. Основное преимущество - это уровень комфорта. Ни для кого не секрет, что чересчур горячие батареи сушат воздух, образуя в доме излишнюю конвекцию, которая поднимает в доме много пыли, оказывая на человеческий организм негативное влияние.
  2. 2. Экономичность. Отказываясь от интенсивного обогрева в пользу выборочного, для которого характерна раздельная регулировка температуры, вы можете сэкономить до 20% теплоносителей.
  3. 3. Технологическая экономичность. Используя режим теплых труб, вы сможете открыть для себя сразу две возможности для обогрева - конденсационные котлы, характеризующиеся КПД до 95%, и солнечные коллекторы, позволяющие получить «бесплатную» энергию.

Устраняя основные источники теплопотерь и желая снизить затраты тогда, когда через 5-10 лет система окупится, владельцы домов могут начинать переоборудование отопительных систем на более экономичный режим работы.

Низкотемпературные системы отопления сегодня по-прежнему еще не получили в России широкого распространения, зато успешно практикуются в Европе, в том числе, в странах с не самым мягким климатом, но там где активно используются для теплоснабжения и климатизации зданий ресурсы возобновляемых источников энергии (ВИЭ).

Г лавными и очевидными достоинствами таких систем является экономия энергоносителей на основе ископаемых углеводород в сочетании с минимизированием вреда экологии. Кроме того, низкотемпературные системы предоставляют пользователю дополнительные возможности в достижении теплового комфорта в доме и управлении микроклиматом помещений.

В России сфера применения низкотемпературных систем отопления ограничена не только климатическими особенностями во многих ее регионах, но и нормативами. В частности, этот фактор действует при массовой застройке, на объектах типа многоквартирных домов, для которых нормативы разработаны под другие режимы теплоснабжения зданий. Поэтому низкотемпературные системы отопления, если и применяются, то в таких учреждениях социального назначения, как поликлиники и детские сады, а также более широко в частном коттеджном секторе. Кроме того, их обычно проектируют и устанавливают для теплоснабжения и климатизации энергосберегающих домов, прежде всего «активных», которые в последние годы тоже стали строится в России. Минимизация теплопотерь через ограничивающие конструкции и вентиляцию здания - вообще одно из главных условий успешного применения там низкотемпературных систем отопления.

Создаются низкотемпературные системы отопления на основе высокоэффективных теплогенераторов и трансформаторов энергии ВИЭ, а также с применением современных моделей отопительных приборов и электронной автоматики, объединяющейся в системы интеллектуального управления.

Генерация с аккумуляцией

По существующим нормативным документам температурный режим системы отопления характеризуется тремя параметрами: температурой теплоносителя на выходе из теплогенератора, на входе в него и температурой воздуха в помещении. Режим, где на выходе из теплогенератора температура теплоносителя не превышает 55 °С, а на входе составляет до 45 °С, считается присущим низкотемпературным системам. Температура воздуха в помещении принимается обычно равной 20 °С. Наиболее распространенные температурные режимы в таких системах - 55/45/20 °С, 45/40/20 °С или даже 35/30/20 °С.

Низкотемпературные системы отопления могут быть моновалентными, где тепло вырабатывается одним теплогенератором, или, чаще, поливалентными, в которых совмещается работа нескольких теплогенераторов или трансформаторов в тепло энергии ВИЭ (рис. 1 ). Такие поливалентные системы еще принято называть гибридными.

Рис.1

Как для моно-, так и для поливалентных систем (в качестве пикового теплогенератора) удачно подходит конденсационный котел. Его режим работы наиболее близок к указанному выше и в значительной степени зависит от температурных параметров системы отопления. Чем ниже температура теплоносителя в обратном котловом контуре, тем более полно происходит конденсация пара, больше тепла будет утилизировано, выше КПД конденсационного котла. Для газовых котлов пороговая температура конденсационного режима - 57 °С. Поэтому и система отопления должна быть рассчитана на использование теплоносителя с более низкой температурой в обратном контуре.

При средних для зимнего периода температурах она по проектному расчету с учетом максимальной эффективности конденсационного режима не должна превышать 45 °С. Такие параметры обеспечиваются низкотемпературными системами отопления, в которых конденсационные котлы работают преимущественно в «штатном» для них режиме.

Разумеется, в низкотемпературных системах может использоваться и находит применение не только конденсационная котельная техника. Теплогенератором в такой системе, в том числе пиковым, может быть любой высокоэффективный котел, работающий на любом топливе и, в частности, электрический. В гибридных системах котел включается в работу только при пиковых нагрузках, когда остальные теплогенераторы (трансформаторы энергии ВИЭ - солнечные коллекторы, тепловые насосы) не справляются с обеспечением теплового комфорта в отапливаемых помещениях и нужд ГВС.

При использовании энергии ВИЭ в системы низкотемпературного водяного отопления обычно включают теплоаккумуляторы, которые могут быть с жидкими и твердыми заполнителями, фазовыми (использующими теплоту фазовых превращений) и термохимическими (теплота аккумулируется за счет эндотермических реакций и высвобождается при экзотермических).

В теплоаккумуляторах с жидкими и твердыми заполнителями (вода, низкозамерзающие жидкости (раствор этиленгликоля), гравий и др.) теплота накапливается за счет теплоемкости материала заполнителя. В фазовых теплоаккумуляторах накопление теплоты происходит при плавлении или изменении кристаллической структуры заполнителя, а высвобождение - при его твердении.

Наибольшее распространение в гибридных низкотемпературных системах водяного отопления, устанавливаемых в коттеджах, получили водяные баки-аккумуляторы, успешно демпфирующие пиковые нагрузки ГВС, запасающие тепло от работы солнечного коллектора, теплового насоса или (зимой) пикового теплогенератора. Аккумулируя тепловую энергию от различных источников, такой теплоаккумулятор позволяет оптимизировать их работу с точки зрения максимальной экономической эффективности в конкретный момент, резервируя «дешевое» тепло. Избыток выработанного тепла при этом может использоваться для ГВС. Их применение оправдано также при использовании тепловых насосов для оптимизации работы компрессоров и гидравлической развязки контуров теплового насоса и нагрузки.

Водяной бак теплоаккумулятор представляет собой хорошо изолированную, например, слоем пенополиуретана толщиной 80-100 мм емкость, в которую встроено несколько теплообменников. Теплоаккумулятор объемом 0,25-2 м 3 может накапливать 14-116 кВт·ч тепловой энергии.

Приборы для систем низкотемпературного отопления

Низкая температура теплоносителя определяет выбор приборов для систем низкотемпературного отопления, которые должны эффективно осуществлять теплоотдачу в отапливаемых помещениях, работая в гибком режиме. Если эти приборы устанавливаются в коттедже, где давление теплоносителя в трубопроводах заведомо невелико, то их прочностные характеристики уходят на второй план.

Рис.2


По мнению специалистов, наиболее удачно в низкотемпературных системах применяются настенные, парапетные или встраиваемые в пол конвекторы с принудительной вентиляцией (рис. 2 ) и стальные панельные радиаторы (рис. 3 ). В таких системах должны применяться конвекторы, оснащенные теплообменником с большой поверхностью - многослойные с частым оребрением и вентилятором, обеспечивающим большой теплосъем. Кроме конвекторов, этим условиям удовлетворяют также настенные настенные и потолочные фанкойлы (вентиляторные доводчики).

Рис.3

В системах принудительной конвекции без вентилятора могут применяться эжекционные доводчики. За счет эффективного теплосъема и большой мощности эти приборы будут обладать небольшими габаритами по сравнению с другими видами оборудования.

Преимуществом таких приборов является возможность их использования в комбинированных системах, которые отапливают помещения в холодный период, а летом используются для охлаждения воздуха.

Если же в низкотемпературных системах применяются конвекторы без вентилятора, их высота должна быть не меньше 400 мм.

Панель с теплоносителем стального панельного радиатора находится снаружи отопительного прибора. От нее греются ламели конвективного элемента. Чем дальше от панели, тем ламели холоднее. Конвекции при низкой температуре радиатора мешает вязкость воздуха, зажатого между ламелями. Но тепловому излучению с панели ничто не мешает.

Стальные панельные радиаторы находят удачное применение в системах низкотемпературного отопления еще и потому, что их модельные линейки включают широкий набор типоразмеров, а это важно для оптимального размещения отопительных приборов в таких системах, в частности, в них должны устанавливаться отопительные приборы, которые перекрывают всю длину оконного проема.

Рис.4

Работа конвекторов с принудительной вентиляцией и стальных панельных радиаторов будет удачно сочетаться с теплым водяным полом (рис. 4 ), который буквально рассчитан на работу с теплоносителем, характеризующимся низкой температурой. Согласно СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование», п. 6.5.12, среднюю температуру поверхности полов со встроенными нагревательными элементами следует принимать не выше 26 °С - для помещений с постоянным пребыванием людей; и не выше 31 °С - для помещений с временным пребыванием людей. Температура поверхности пола по оси нагревательного элемента в детских учреждениях, жилых зданиях и плавательных бассейнах не должна превышать 35 °С. В реальных условиях при существующих технологиях монтажа теплого пола такие температуры его поверхности достигаются при температурах теплоносителя на входе в трубопровод теплого пола не выше 45 °С.

Теплые полы значительно повышают экономичность низкотемпературных систем отопления. Так, при оборудовании теплого пола запаса энергии водяного теплоаккумулятора емкостью 1,2 м 3 достаточно для отопления дома площадью 130-140 м 2 за счет электроэнергии, получаемой по низкому ночному тарифу.

Все приборы водяного отопления в низкотемпературных системах отопления оснащаются терморегулирующей автоматикой.

Интеллектуальное управление

Так как большинство низкотемпературных систем являются гибридными, а также возможно совмещение в одной такой системе функций отопления и кондиционирования, то наибольшей их эффективности и экономичности можно достичь при рациональном управлении всеми составляющими системы. Сегодня для этого применяются системы smart-управления.

Без интеллектуального управления невозможно эффективно и в то же время гибко регулировать систему, основываясь на реальных показаниях датчиков, а не на встроенных графиках, не учитывающих условия конкретно взятого объекта теплоснабжения. Когда в проекте используется smart-управление, необходимо только задать первоначальные настройки, а дальше интеллектуальная автоматика будет автоматически их поддерживать.

Smart-контроллер отвечает за переключение системы с одного источника тепла на другой. Ежесекундно обрабатывая несколько вводных, контроллер выбирает самый экономичный на данный момент источник тепла. Согласно заданной логике сначала используется тепловая энергия от самого дешевого источника.

Применение таких систем интеллектуального управления позволяет дифференцированно задавать температуры в контролируемых помещениях, добиваясь тем самым, кроме экономичности, еще и наивысшего уровня теплового комфорта.

Статья из . Рубрика "Отопление и ГВС"