Виды металлов и их классификация

Продольная сила в балке. Изгиб

Размещенно 13/11/2007 12:34

Итак, beam

1. балка; прогон; ригель

2. луч

3. брус; поперечина, траверса

4. коромысло (весов)

5. стрела или рукоять стрелы (крана)

beam and column — балочно-стоечная конструкция; концевая [торцовая] рама металлического каркаса

beam carrying transverse loads — балка, нагруженная поперечными силами [поперечной нагрузкой]

beam fixed at both ends — балка с защемлёнными концами

beam loaded unsymmetrically — балка, нагруженная несимметричной нагрузкой (действующей вне плоскости симметрии сечения и вызывающей косой изгиб)

beam made of precast hollow blocks — балка, собираемая из пустотелых [коробчатых] секций (с натяжением продольной арматуры)

beam on elastic foundation — балка на упругом основании

beams placed monolithically with slabs — балки, бетонируемые совместно с плитами перекрытий

beam precast on site — сборная железобетонная балка, изготовленная на стройплощадке [построечного изготовления]

beam subjected to (both) transverse and axial loads — балка, нагруженная поперечными и продольными силами; балка, подверженная воздействию поперечной и осевой нагрузок

beam supported on a girder — балка, опирающаяся на прогон; балка, поддерживаемая прогоном

beam with overhangs — консольная балка

beam with rectangular section — балка прямоугольного сечения

beam with symmetrical (cross) section — балка симметричного (поперечного) сечения

beam with unsymmetrical (cross) section — балка несимметричного (поперечного) сечения

beam of constant depth — балка постоянной высоты

beam of one span — однопролётная балка

beam of uniform strength — равнопрочная балка

anchor beam — анкерная балка

angle beam — металлический уголок; уголковая сталь

annular beam — кольцевая балка

arch(ed) beam

2. выпуклая балка с поясами различной кривизны

baffle beam — забральная балка

balance beam — балансирная балка; коромысло весов

bamboo-reinforced concrete beam — бетонная балка, армированная бамбуком

basement beam — балка надподвального перекрытия

bedplate beam — балка [ребро] опорной плиты

bending test beam — балочка(-образец){балочка-образец¦балочка} для испытания на изгиб

Benkelman beam — балка Бенкельмана, прогибомер

bind beam — свайная насадка

bisymmetrical beam — балка с сечением, симметричным относительно двух осей

block beam — преднапряжённая железобетонная балка из отдельных блоков [секций] (соединяемых натяжением арматуры)

bond beam — связывающая [усиливающая] балка (железобетонная балка, усиливающая каменную стену и предупреждающая образование в ней трещин)

boundary beam — подстропильная балка; краевая балка

box beam — балка коробчатого сечения; коробчатая балка

braced beam — шпренгельная балка

bracing beam — раскрепляющая балка; распорка

brake beam — тормозная балка

breast beam — перемычка [балка] над широким проёмом в стене

brick beam — рядовая кирпичная перемычка (с усилением стальными прутками)

bridge beam — мостовая балка, мостовой прогон

bridging beam — поперечная балка (между балками перекрытия)

broad-flange(d) beam — широкополочная двутавровая балка, широкополочный двутавр

buffer beam — буферный брус, бампер

built-in beam — встроенная (в каменную кладку) балка; балка с защемлёнными концами

built-up beam — составная балка

camber beam

1. балка с выпуклым верхним поясом

2. балка, слегка выгнутая вверх (для создания строительного подъёма)

candle beam — балка, поддерживающая свечи или светильники

cantilever beam

1. консольная балка, консоль

2. балка с одной или двумя консолями

capping beam

1. оголовок; насадка (опоры моста)

2. ростверк ленточного свайного фундамента

cased beam

1. стальная балка, замоноличенная в бетон

2. стальная балка с наружной оболочкой (как правило, декоративной)

castellated beam — перфорированная балка

castella Z beam — перфорированный зетовый профиль

ceiling beam — потолочная балка; балка, выступающая из потолка; балка ложного потолка

channel beam — швеллерная балка

chief beam — главная балка, прогон

circular beam — кольцевая балка

collar beam — повышенная затяжка висячих стропил

composite beam — составная балка

compound beam — составная балка

conjugate beam — сопряжённая балка

constant-section beam — балка постоянного сечения

continuous beam — неразрезная балка

crane lifting beam — монтажная траверса

crane runway beam — подкрановая балка

cross beam

1. поперечная балка

2. гидр. шапочный брус

curved beam

1. балка с криволинейной осью (в плоскости нагружения)

2. криволинейная (в плане) балка

deck beam — балка, поддерживающая настил; ребро настила

deep beam — балка-стенка

double-T beam

1. сборная железобетонная балка в форме двойного «Т»

2. сборная железобетонная панель с двумя рёбрами

doubly symmetrical beam — балка симметричного сечения с двумя осями симметрии

dragging beam — отрезок бруса, поддерживающий внизу накосную стропильную ногу; подбалка

drop-in beam — висячая балка; балка, поддерживаемая (на обоих концах) консолями

eaves beam — под стропильная балка (наружного ряда колонн)

edge beam

1. краевая балка

2. бортовой камень

elastically restrained beam — упруго-защемлённая балка, балка с упруго защемлёнными концами

encastre beam — балка с защемлёнными концами

externally reinforced concrete beam — железобетонная балка, усиленная наружными арматурными элементами (обычно наклейкой стальных полос на верхней и нижней гранях балки)

false beam — ложная балка

fish(ed) beam

1. деревянная составная балка с боковыми металлическими стыковыми накладками

2. балка с выпуклыми криволинейными поясами

fixed(-end) beam — балка с защемлёнными концами

flitch(ed) beam — составная деревометаллическая балка (состоящая из средней стальной полосы и двух боковых досок, скреплённых болтами)

floor beam

1. балка перекрытия; балка пола, лага

2. поперечная балка проезжей части моста

3. балка лестничной площадки

footing beam — затяжка стропильной фермы (на уровне концов стропильных ног)

foundation beam — фундаментная балка, рандбалка

framework beam — ригель рамы (рамной конструкции)

free beam — свободноопёртая балка на двух опорах

gantry beam — подкрановая балка

Gerber beam — шарнирная балка, балка Гербера

glue(d) laminated (timber) beam — многослойная дощатоклеёная балка

grade beam — фундаментная балка, рандбалка

grillage beams — балки ростверка

ground beam

1. фундаментная балка, ростверк; рандбалка

2. нижняя обвязка каркасной стены; лежень

H beam — широкополочная балка, широкополочный двутавр

hammer beam — опорный консольный брус [подбабок] стропильной ноги

haunched beam — балка с вутами

high strength concrete beam — балка из высокопрочного железобетона

hinged beam — шарнирная балка

hollow beam — пустотелая балка; коробчатая [трубчатая] балка

hollow prestressed concrete beam — пустотелая преднапряжённая железобетонная балка

horizontally curved beam — криволинейная в плане балка

hung-span beam — многопролётная консольно-подвесная балка, балка Гербера

hybrid beam — стальная составная балка (изготовленная из сталей разных марок)

I beam — двутавровая балка, двутавр

inverted T beam — тавровая (железобетонная) балка со стенкой, обращённой вверх

jack beam — подстропильная балка

jesting beam — декоративная [орнаментная] балка

joggle beam — составная балка из деревянных брусьев, соединённых по высоте ответными выступами и пазами

jointed beam

1. монолитная железобетонная балка, бетонируемая с устройством стыковых швов

2. сборная железобетонная балка, собираемая из отдельных секций

keyed beam — балка из брусьев с соединениями на призматических шпонках

L beam — балка Г-образного сечения

laminated beam — дощатоклеёная балка

laterally-unsupported beam — балка без боковых связей

lattice beam — решётчатая [сквозная] балка

leveling beam — рейка для проверки ровности дорожного покрытия

lifting beam — грузоподъёмная траверса

link beam — перемычка (над проёмом в стене)

longitudinal beam — продольная балка

main beam — главная балка

modified I beam — сборная железобетонная балка с выпусками хомутов из верхней полки (для соединения с верхней монолитной железобетонной плитой)

multispan beam — многопролётная балка

nailed beam — составная деревянная балка с соединениями на гвоздях; гвоздевая балка

needle beam

1. балка для временного опирания стены (при усилении фундамента)

2. верхний упорный прогон спицевого затвора

outrigger beam — балка выносной [дополнительной] опоры (крана, экскаватора)

overhead runway beam — кран-балка

parallel flanges beam — балка с параллельны ми полками

partition beam — балка, несущая перегородку

precast beam — сборная железобетонная балка

precast toe beam — сборная опорная балка (напр. поддерживающая кирпичную облицовку)

prestressed concrete beam — предварительно напряжённая железобетонная балка

prestressed precast concrete beam — сборная предварительно напряжённая железобетонная балка

prismatic beam — призматическая балка

propped cantilever beam — балка с одним защемлённым и другим шарнирно опёртым концами

rectangular beam — балка прямоугольного сечения

reinforced concrete beam — железобетонная балка

reinforced floor beam — балка железобетонного ребристого перекрытия

restrained beam — балка с защемлёнными концами

ridge beam — коньковый брус, коньковая балка

ring beam — кольцевая балка

rolled beam with cover plates — прокатная (двутавровая) балка с поясными листами

rolled I beam — прокатная [горячекатаная] двутавровая балка

rolled steel beam — прокатная стальная балка

roof beam — балка покрытия

runway beam — кран-балка

sandwich beam — составная балка

secondary beam — второстепенная [вспомогательная] балка

simple beam — простая [однопролётная свободно опёртая] балка

simple-span beam — однопролётная балка

simply supported beam — свободно опёртая балка

single web beam — (составная) балка с одной стенкой, одностенчатая (составная) балка

slender beam — гибкая балка (балка, требующая проверочного расчёта на потерю устойчивости из плоскости изгиба)

soldier beam — стальная стойка крепления стенок траншей или больверка

spandrel beam

1. фундаментная балка, рандбалка

2. ригель каркаса, поддерживающий [несущий] наружную стену

spreader beam — распределительная балка

statically determinate beam — статически определимая балка

statically indeterminate beam — статически неопределимая балка

steel beam — стальная балка

steel binding beam — стальная распорка, стальная соединительная балка

stiff beam — жёсткая балка

stiffening beam — балка жёсткости

straight beam — прямая [прямолинейная] балка

strengthened beam — усиленная балка

strut-framed beam — шпренгельная балка

supporting beam — опорная [поддерживающая] балка

suspended-span beam — подвесная [висячая] балка консольно-балочного пролёта (моста)

T beam — тавровая балка

tail beam — укороченная деревянная балка перекрытия (у проёма)

tee beam — тавровая балка

tertiary beam — балка, поддерживаемая вспомогательными балками

test beam — испытательная балочка, балочка-образец

through beam — неразрезная многопролётная балка

tie beam

1. затяжка (стропил, арки) на уровне опор

2. распределительная фундаментная балка (распределяет внецентренную нагрузку)

top beam — повышенная затяжка стропил

top-running crane beam — опорная кран-балка (перемещающаяся по верхнему поясу подкрановых балок)

transverse beam — поперечная балка

trolley I beam — катучая (двутавровая) балка

trussed beam

1. ферма с параллельными поясами, балочная ферма

2. шпренгельная балка

uniformly loaded beam — балка, нагруженная равномерно распределённой нагрузкой; равномерно нагруженная балка

unjointed beam

1. монолитная железобетонная балка без рабочего шва

2. стальная балка без стыка в стенке

upstand beam — балка ребристого перекрытия, выступающая над плитой

valley beam — подстропильная балка среднего ряда колонн; балка, поддерживающая ендову

vibrating beam — виброрейка, вибробрус

vibrating leveling beam — выравнивающий вибробрус

vibratory beam — виброрейка, вибробрус

wall beam — стальной анкер для крепления деревянных балок или перекрытий к стене

welded I beam — сварной двутавр

wide-flanged beam — широкополочная балка, широкополочный двутавр

wind beam — повышенная затяжка висячих стропил

wood I beam — деревянная двутавровая балка

AZM

Использовано фото из материалов пресс-службы ASTRON Buildings

На практике очень часто встречаются случаи совместной работы стержня на изгиб и на растяжение или сжатие. Подобного рода деформация может вызываться или совместным действием на балку продольных и поперечных сил, или только одними продольными силами.

Первый случай изображен на Рис.1. На балку АВ действуют равномерно распределенная нагрузка q и продольные сжимающие силы Р.

Рис.1.

Предположим, что прогибами балки по сравнению с размерами поперечного сечения можно пренебречь; тогда с достаточной для практики степенью точности можно считать, что и после деформации силы Р будут вызывать лишь осевое сжатие балки.

Применяя способ сложения действия сил, мы можем найти нормальное напряжение в любой точке каждого поперечного сечения балки как алгебраическую сумму напряжений, вызванных силами Р и нагрузкой q.

Сжимающие напряжения от сил Р равномерно распределены по площади F поперечного сечения и одинаковы для всех сечений

нормальные напряжения от изгиба в вертикальной плоскости в сечении с абсциссой х, которая отсчитана, скажем, от левого конца балки, выражаются формулой

Таким образом, полное напряжение в точке с координатой z (считая от нейтральной оси) для этого сечения равно

На Рис.2 изображены эпюры распределения напряжений в рассматриваемом сечении от сил Р, нагрузки q и суммарная эпюра.

Наибольшее напряжение в этом сечении будет в верхних волокнах, где оба вида деформации вызывают сжатие; в нижних волокнах может быть или сжатие или растяжение в зависимости от числовых величин напряжений и. Для составления условия прочности найдем наибольшее нормальное напряжение.

Рис.2.

Так как напряжения от сил Р во всех сечениях одинаковы и равномерно распределены, то опасными будут волокна, наиболее напряженные от изгиба. Такими являются крайние волокна в сечении с наибольшим изгибающим моментом; для них

Таким образом, напряжения в крайних волокнах 1 и 2 среднего сечения балки выражаются формулой

и расчетное напряжение будет равно

Если бы силы Р были растягивающими, то знак первого слагаемого изменился бы, опасными были бы нижние волокна балки.

Обозначая буквой N сжимающую или растягивающую силу, можем написать общую формулу для проверки прочности

Описанный ход расчета применяется и при действии на балку наклонных сил. Такую силу можно разложить на нормальную к оси, изгибающую балку, и продольную, сжимающую или растягивающую.

балка изгиб сила сжатие

Все многообразие существующих опорных устройств схематизируется в виде ряда основных типов опор, из которых

наиболее часто встречаются: шарнирно-подвижная опора (возможные обозначения для нее представлены на рис.1,а), шарнирно-неподвижная опора (рис.1,б) и жесткое защемление , или заделка (рис.1,в).

В шарнирно-подвижной опоре возникает одна опорная реакция, перпендикулярная опорной плоскости. Такая опора лишает опорное сечение одной степени свободы, то есть препятствует смещению в направлении опорной плоскости, но допускает перемещение в перпендикулярном направлении и поворот опорного сечения.
В шарнирно-неподвижной опоре возникают вертикальная и горизонтальная реакции. Здесь невозможны перемещения по направлениям опорных стержней, но допускается поворот опорного сечения.
В жесткой заделке возникают вертикальная и горизонтальная реакции и опорный (реактивный) момент. При этом опорное сечение не может смещаться и поворачиваться.При расчете систем, содержащих жесткую заделку, возникающие опорные реакции можно не определять, выбирая при этом отсеченную часть так, чтобы заделка с неизвестными реакциями в нее не попадала. При расчете систем на шарнирных опорах реакции опор должны быть определены обязательно. Уравнения статики, используемые для этого, зависят от вида системы (балка, рама и др.) и будут приведены в соответствующих разделах настоящего пособия.

2. Построение эпюр продольных сил Nz

Продольная сила в сечении численно равна алгебраической сумме проекций всех сил, приложенных по одну сторону от рассматриваемого сечения, на продольную ось стержня.

Правило знаков для Nz: условимся считать продольную силу в сечении положительной, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части стержня, вызывает растяжение и отрицательной - в противном случае.

Пример 1. Построить эпюру продольных сил для жестко защемленной балки (рис.2).

Порядок расчета:

1. Намечаем характерные сечения, нумеруя их от свободного конца стержня к заделке.
2. Определяем продольную силу Nz в каждом характерном сечении. При этом рассматриваем всегда ту отсеченную часть, в которую не попадает жесткая заделка.

По найденным значениям строим эпюру Nz. Положительные значения откладываются (в выбранном масштабе) над осью эпюры, отрицательные - под осью.

3. Построение эпюр крутящих моментов Мкр .

Крутящий момент в сечении численно равен алгебраической сумме внешних моментов, приложенных по одну сторону от рассматриваемого сечения, относительно продольной оси Z.

Правило знаков для Мкр : условимся считать крутящий момент в сечении положительным, если при взгляде на сечение со стороны рассматриваемой отсеченной части внешний момент виден направленным против движения часовой стрелки и отрицательным - в противном случае.

Пример 2. Построить эпюру крутящих моментов для жестко защемленного стержня (рис.3,а).

Порядок расчета.

Следует отметить, что алгоритм и принципы построения эпюры крутящих моментов полностью совпадают с алгоритмом и принципами построения эпюры продольных сил .

1.Намечаем характерные сечения.
2.Определяем крутящий момент в каждом характерном сечении.

По найденным значениям строимэпюру Мкр (рис.3,б).

4. Правила контроля эпюр Nz и Мкр .

Для эпюр продольных сил и крутящих моментов характерны определенные закономерности, знание которых позволяет оценить правильность выполненных построений.

1. Эпюры Nz и Мкр всегда прямолинейные.

2. На участке, где нет распределенной нагрузки, эпюра Nz(Мкр) - прямая, параллельная оси, а на участке под распределенной нагрузкой - наклонная прямая.

3. Под точкой приложения сосредоточенной силы на эпюре Nz обязательно должен быть скачок на величину этой силы, аналогично под точкой приложения сосредоточенного момента на эпюре Мкр будет скачок на величину этого момента.

5. Построение эпюр поперечных сил Qy и изгибающих моментов Mx в балках

Стержень, работающий на изгиб, называется балкой . В сечениях балок, загруженных вертикальными нагрузками, возникают, как правило, два внутренних силовых фактора - Qy и изгибающий момент Mx .

Поперечная сила в сечении численно равна алгебраической сумме проекций внешних сил, приложенных по одну сторону от рассматриваемого сечения, на поперечную (вертикальную) ось.

Правило знаков для Qy: условимся считать поперечную силу в сечении положительной, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, стремится повернуть данное сечение по часовой стрелке и отрицательной - в противном случае.

Схематически это правило знаков можно представить в виде

Изгибающий момент Mx в сечении численно равен алгебраической сумме моментов внешних сил, приложенных по одну сторону от рассматриваемого сечения, относительно оси x , проходящей через данное сечение.

Правило знаков для Mx: условимся считать изгибающий момент в сечении положительным, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, приводит к растяжению в данном сечении нижних волокон балки и отрицательной - в противном случае.

Схематически это правило знаков можно представить в виде:

Следует отметить, что при использовании правила знаков для Mx в указанном виде, эпюра Mx всегда оказывается построенной со стороны сжатых волокон балки.

6. Консольные балки

При построении эпюр Qy и Mx в консольных, или жестко защемленных, балках нет необходимости (как и в рассмотренных ранее примерах) вычислять опорные реакции, возникающие в жесткой заделке, но выбирать отсеченную часть нужно так, чтобы заделка в нее не попадала.

Пример 3. Построить эпюры Qy и Mx (рис.4).

Порядок расчета .

1. Намечаем характерные сечения.

Рассчитывать балку на изгиб можно несколькими вариантами:
1. Расчет максимальной нагрузки, которую она выдержит
2. Подбор сечения этой балки
3. Расчет по максимальным допустимым напряжениям (для проверки)
Давайте рассмотрим общий принцип подбора сечения балки на двух опорах загруженной равномерно распределенной нагрузкой или сосредоточенной силой.
Для начала, вам необходимо будет найти точку (сечение), в которой будет максимальный момент. Это зависит от опирания балки или же ее заделки. Снизу приведены эпюры изгибающих моментов для схем, которые встречаются чаще всего.



После нахождения изгибающего момента мы должны найти момент сопротивления Wx этого сечения по формуле приведенной в таблице:

Далее, при делении максимального изгибающего момента на момент сопротивления в данном сечении, мы получаем максимальное напряжение в балке и это напряжение мы должны сравнить с напряжением, которое вообще сможет выдержать наша балка из заданного материала.

Для пластичных материалов (сталь, алюминий и т.п.) максимальное напряжение будет равно пределу текучести материала , а для хрупких (чугун) – пределу прочности . Предел текучести и предел прочности мы можем найти по таблицам ниже.




Давайте рассмотрим пару примеров:
1. [i]Вы хотите проверить, выдержит ли вас двутавр №10 (сталь Ст3сп5) длиной 2 метра жестко заделанного в стену, если вы на нем повисните. Ваша масса пусть будет 90 кг.
Для начала нам необходимо выбрать расчетную схему.


На данной схеме видно, что максимальный момент будет в заделке, а поскольку наш двутавр имеет одинаковое сечение по всей длине , то и максимальное напряжение будет в заделке. Давайте найдем его:

P = m * g = 90 * 10 = 900 Н = 0.9 кН


М = P * l = 0.9 кН * 2 м = 1.8 кН*м


По таблице сортамента двутавров находим момент сопротивления двутавра №10.


Он будет равен 39.7 см3. Переведем в кубические метры и получим 0.0000397 м3.
Далее по формуле находим максимальные напряжения, которые у нас возникают в балке.

б = М / W = 1.8 кН/м / 0.0000397 м3 = 45340 кН/м2 = 45.34 МПа


После того, как мы нашли максимальное напряжение, которое возникает в балке, то мы его может сравнить с максимально допустимым напряжением равным пределу текучести стали Ст3сп5 – 245 МПа.

45.34 МПа – верно, значит данный двутавр выдержит массу 90 кг.


2. [i]Поскольку у нас получился доволи-таки большой запас, то решим вторую задачу, в которой найдем максимально возможную массу, которую выдержит все тот же двутавр №10 длиной 2 метра.
Если мы хотим найти максимальную массу, то значения предела текучести и напряжения, которое будет возникать в балке, мы должны приравнять (б=245 Мпа = 245 000 кН*м2).

В точках поперечных сечений бруса при продольнопоперечном изгибе возникают нормальные напряжения от сжатия продольными силами и от изгиба поперечными и продольными нагрузками (рис. 18.10).

В наружных волокнах балки в опасном сечении суммарные нормальные напряжения имеют наибольшие значения:

В рассмотренном выше примере сжатой балки с одной поперечной силой согласно (18.7) получаем такие напряжения в наружных волокнах:

Если опасное сечение симметрично относительно его нейтральной оси, то наибольшим по абсолютной величине будет напряжение в наружных сжатых волокнах:

В сечении, не симметричном относительно нейтральной оси, наибольшим по абсолютной величине может быть как сжимающее, так и растягивающее напряжение в наружных волокнах.

При установлении опасной точки следует учитывать различие в сопротивлении материала растяжению и сжатию.

Учитывая выражение (18.2), формулу (18.12) можно записать так:

Применяя приближенное выражение для получаем

Опасным в балках постоянного сечения будет то сечение, для которого числитель второго слагаемого имеет наибольшее значение.

Размеры поперечного сечения бруса должны быть подобраны так, чтобы не превышало допускаемого напряжения

Однако полученная зависимость между напряжениями и геометрическими характеристиками сечения сложна для проектировочного расчета; размеры сечения можно подобрать только методом повторных попыток. При продольно-поперечном изгибе проводится, как правило, поверочный расчет, назначение которого установить запас прочности детали.

При продольно-поперечном изгибе между напряжениями и продольными силами нет пропорциональности; напряжения при переменной осевой силе растут быстрее, чем сама сила, что видно, например, из формулы (18.13). Поэтому запас прочности в случае продольно-поперечного изгиба надо определять не по напряжениям, т. е. не из отношения а по нагрузкам, понимая под запасом прочности число, показывающее, во сколько раз надо увеличить действующие нагрузки, чтобы максимальное напряжение в рассчитываемой детали достигло предела текучести.

Определение запаса прочности связано с решением трансцендентных уравнений, так как сила содержится в формулах (18.12) и (18.14) под знаком тригонометрической функции. Например, для балки, сжатой силой и нагруженной одной поперечной силой Р, запас прочности согласно (18.13) находится из уравнения

Для упрощения задачи можно воспользоваться формулой (18.15). Тогда для определения запаса прочности получаем квадратное уравнение:

Заметим, что в случае, когда продольная сила остается постоянной, а изменяются по величине только поперечные нагрузки, задача определения запаса прочности упрощается, и возможно определение не по нагрузке, а по напряжениям. Из формулы (18.15) для этого случая находим

Пример. Двухопорная дюралюминиевая балка двутаврового тонкостенного сечения сжата силой Р и подвергнута действию равномерно распределенной поперечной нагрузки интенсивностью и моментов приложенных на концах

балки, как показано на рис. 18.11. Определить напряжение в опасной точке и максимальный прогиб с учетом и без учета изгибающего действия продольной силы Р, а также найти запас прочности балки по пределу текучести .

В расчетах принять Характеристики двутавра:

Решение. Наиболее нагруженным является среднее сечение балки. Максимальный прогиб и изгибающий момент от одной только поперечной нагрузки:

Максимальный прогиб от совместного действия поперечной нагрузки и продольной силы Р определим по формуле (18.10). Получим