Клей, клеевые смеси

Вычисление размещений онлайн. Комбинаторика

Комбинаторика - это раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов. Основы комбинаторики очень важны для оценки вероятностей случайных событий, т.к. именно они позволяют подсчитать принципиальновозможное количество различных вариантов развития событий.

Основная формула комбинаторики

Пусть имеется k групп элементов, причем i-я группа состоит из n i элементов. Выберем по одному элементу из каждой группы. Тогда общее число N способов, которыми можно произвести такой выбор, определяется соотношением N=n 1 *n 2 *n 3 *...*n k .

Пример 1. Поясним это правило на простом примере. Пусть имеется две группы элементов, причем первая группа состоит из n 1 элементов, а вторая - из n 2 элементов. Сколько различных пар элементов можно составить из этих двух групп, таким образом, чтобы в паре было по одному элементу от каждой группы? Допустим, мы взяли первый элемент из первой группы и, не меняя его, перебрали все возможные пары, меняя только элементы из второй группы. Таких пар для этого элемента можно составить n 2 . Затем мы берем второй элемент из первой группы и также составляем для него все возможные пары. Таких пар тоже будет n 2 . Так как в первой группе всего n 1 элемент, всего возможных вариантов будет n 1 *n 2 .

Пример 2. Сколько трехзначных четных чисел можно составить из цифр 0, 1, 2, 3, 4, 5, 6, если цифры могут повторяться?
Решение: n 1 =6 (т.к. в качестве первой цифры можно взять любую цифру из 1, 2, 3, 4, 5, 6), n 2 =7 (т.к. в качестве второй цифры можно взять любую цифру из 0, 1, 2, 3, 4, 5, 6), n 3 =4 (т.к. в качестве третьей цифры можно взять любую цифру из 0, 2, 4, 6).
Итак, N=n 1 *n 2 *n 3 =6*7*4=168.

В том случае, когда все группы состоят из одинакового числа элементов, т.е. n 1 =n 2 =...n k =n можно считать, что каждый выбор производится из одной и той же группы, причем элемент после выбора снова возвращается в группу. Тогда число всех способов выбора равно n k . Такой способ выбора в комбинаторики носит название выборки с возвращением.

Пример 3. Сколько всех четырехзначных чисел можно составить из цифр 1, 5, 6, 7, 8?
Решение. Для каждого разряда четырехзначного числа имеется пять возможностей, значит N=5*5*5*5=5 4 =625.

Рассмотрим множество, состоящие из n элементов. Это множество в комбинаторике называется генеральной совокупностью .

Число размещений из n элементов по m

Определение 1. Размещением из n элементов по m в комбинаторике называется любой упорядоченный набор из m различных элементов, выбранных из генеральной совокупности в n элементов.

Пример 4. Различными размещениями из трех элементов {1, 2, 3} по два будут наборы (1, 2), (2, 1), (1, 3), (3, 1), (2, 3),(3, 2). Размещения могут отличаться друг от друга как элементами, так и их порядком.

Число размещений в комбинаторике обозначается A n m и вычисляется по формуле:

Замечание: n!=1*2*3*...*n (читается: "эн факториал"), кроме того полагают, что 0!=1.

Пример 5 . Сколько существует двузначных чисел, в которых цифра десятков и цифра единиц различные и нечетные?
Решение: т.к. нечетных цифр пять, а именно 1, 3, 5, 7, 9, то эта задача сводится к выбору и размещению на две разные позиции двух из пяти различных цифр, т.е. указанных чисел будет:

Определение 2. Сочетанием из n элементов по m в комбинаторике называется любой неупорядоченный набор из m различных элементов, выбранных из генеральной совокупности в n элементов.

Пример 6 . Для множества {1, 2, 3}сочетаниями являются {1, 2}, {1, 3}, {2, 3}.

Число сочетаний из n элементов по m

Число сочетаний обозначается C n m и вычисляется по формуле:

Пример 7. Сколькими способами читатель может выбрать две книжки из шести имеющихся?

Решение: Число способов равно числу сочетаний из шести книжек по две, т.е. равно:

Перестановки из n элементов

Определение 3. Перестановкой из n элементов называется любой упорядоченный набор этих элементов.

Пример 7a. Всевозможными перестановками множества, состоящего из трех элементов {1, 2, 3} являются: (1, 2, 3), (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 2, 1), (3, 1, 2).

Число различных перестановок из n элементов обозначается P n и вычисляется по формуле P n =n!.

Пример 8. Сколькими способами семь книг разных авторов можно расставить на полке в один ряд?

Решение: эта задача о числе перестановок семи разных книг. Имеется P 7 =7!=1*2*3*4*5*6*7=5040 способов осуществить расстановку книг.

Обсуждение. Мы видим, что число возможных комбинаций можно посчитать по разным правилам (перестановки, сочетания, размещения) причем результат получится различный, т.к. принцип подсчета и сами формулы отличаются. Внимательно посмотрев на определения, можно заметить, что результат зависит от нескольких факторов одновременно.

Во-первых, от того, из какого количества элементов мы можем комбинировать их наборы (насколько велика генеральная совокупность элементов).

Во-вторых, результат зависит от того, какой величины наборы элементов нам нужны.

И последнее, важно знать, является ли для нас существенным порядок элементов в наборе. Поясним последний фактор на следующем примере.

Пример 9. На родительском собрании присутствует 20 человек. Сколько существует различных вариантов состава родительского комитета, если в него должны войти 5 человек?
Решение: В этом примере нас не интересует порядок фамилий в списке комитета. Если в результате в его составе окажутся одни и те же люди, то по смыслу для нас это один и тот же вариант. Поэтому мы можем воспользоваться формулой для подсчета числа сочетаний из 20 элементов по 5.

Иначе будут обстоять дела, если каждый член комитета изначально отвечает за определенное направление работы. Тогда при одном и том же списочном составе комитета, внутри него возможно 5! вариантов перестановок , которые имеют значение. Количество разных (и по составу, и по сфере ответственности) вариантов определяется в этом случае числом размещений из 20 элементов по 5.

Задачи для самопроверки
1. Сколько трехзначных четных чисел можно составить из цифр 0, 1, 2, 3, 4, 5, 6, если цифры могут повторяться?

2. Сколько существует пятизначных чисел, которые одинаково читаются слева направо и справа налево?

3. В классе десять предметов и пять уроков в день. Сколькими способами можно составить расписание на один день?

4. Сколькими способами можно выбрать 4 делегата на конференцию, если в группе 20 человек?

5. Сколькими способами можно разложить восемь различных писем по восьми различным конвертам, если в каждый конверт кладется только одно письмо?

6. Из трех математиков и десяти экономистов надо составить комиссию, состоящую из двух математиков и шести экономистов. Сколькими способами это можно сделать?

Число размещений без повторений из n по k n k различными координатами.

Число размещений без повторений находится по формуле:

Пример: Сколькими способами можно построить 3-значное число с различными цифрами, не содержащее цифры 0?

Количество цифр
, размерность вектора с различными координатами

Число размещений с повторениями

Число размещений с повторениями из n по k – это число способов, сколькими можно из n различных элементов построить векторов с k координатами, среди которых могут быть одинаковые.

Число размещений с повторениями находится по формуле:

.

Пример: Сколько слов длины 6 можно составить из 26 букв латинского алфавита?

Количество букв
, размерность вектора

Число перестановок без повторений

Число перестановок без повторений из n элементов – это число способов, сколькими можно расположить на n различных местах n различных элементов.

Число перестановок без повторений находится по формуле:

.

Замечание: Мощность искомого множества А удобно искать по формуле:
, гдех – число способов выбрать нужные места; у – число способов расположить на них нужные элементы; z – число способов расположить остальные элементы на оставшихся местах.

Пример. Сколькими способами можно расставить на книжной полке 5 различных книг? В скольких случаях две определенные книги А и В окажутся рядом?

Всего способов расставить 5 книг на 5-ти местах – равно = 5! = 120.

В задаче х – число способов выбрать два места рядом, х = 4; у – число способов расположить две книги на двух местах, у = 2! = 2; z – число способов расположить остальные 3 книги на оставшихся 3-х местах, z = 3! = 6. Значит
= 48.

Число сочетаний без повторений

Число сочетаний без повторений из n по k – это число способов, сколькими можно из n различных элементов выбрать k штук без учета порядка.

Число сочетаний без повторений находится по формуле:

.

Свойства:

1)
; 2)
; 3)
;

4)
; 5)
; 6)
.

Пример. В урне 7 шаров. Из них 3 белых. Наугад выбирают 3 шара. Сколькими способами это можно сделать? В скольких случаях среди них будет ровно один белый.

Всего способов
. Чтобы получить число способов выбрать 1 белый шар (из 3-х белых) и 2 черных шара (из 4-х черных), надо перемножить
и
Таким образом искомое количество способов

Упражнения

1. Из 35 учащихся класс по итогам года имели “5” по математике – 14 человек; по физике – 15 человек; по химии – 18 человек; по математике и физике – 7 человек; по математике и химии – 9 человек; по физике и химии – 6 человек; по всем трем предметам – 4 человек. Сколько человек имеют “5” по указанным предметам? Сколько человек не имеет “5” по указанным предметам? Имеет “5” только по математике? Имеет “5” только по двум предметам?

2. В группе из 30 студентов каждый знает, по крайней мере, один иностранный язык – английский или немецкий. Английский знают 22 студента, немецкий – 17. Сколько студентов знают оба языка? Сколько студентов знают немецкий язык, но не знают английский?

3. В 20 комнатах общежития института Дружбы Народов живут студенты из России; в 15 – из Африки; в 20 – из стран Южной Америки. Причем в 7 – живут россияне и африканцы, в 8 – россияне и южноамериканцы; в 9 – африканцы и южноамериканцы; в 3 – и россияне, и южноамериканцы, и африканцы. В скольких комнатах живут студенты: 1) только с одного континента; 2) только с двух континентов; 3) только африканцы.

4. Каждый из 500 студентов обязан посещать хотя бы один из трех спецкурсов: по математике, физике и астрономии. Три спецкурса посещают 10 студентов, по математике и физике – 30 студентов, по математике и астрономии – 25; спецкурс только по физике – 80 студентов. Известно также, что спецкурс по математике посещают 345 студентов, по физике – 145, по астрономии – 100 студентов. Сколько студентов посещают спецкурс только по астрономии? Сколько студентов посещают два спецкурса?

5. Староста курса представил следующий отчет по физкультурной работе. Всего – 45 студентов. Футбольная секция – 25 человек, баскетбольная секция – 30 человек, шахматная секция – 28 человек. При этом, 16 человек одновременно посещают футбольную и баскетбольную секции, 18 – футбольную и шахматную, 17 – баскетбольную и шахматную, 15 человек посещают все три секции. Объясните, почему отчет не был принят.

6. В аквариуме 11 рыбок. Из них 4 красных, остальные золотые. Наугад выбирают 4 рыбки. Сколькими способами это можно сделать? Найти число способов сделать это так, чтобы среди них будет: 1) ровно одна красная; 2) ровно 2 золотых; 3) хотя бы одна красная.

7. В списке 8 фамилий. Из них 4 – женские. Сколькими способами их можно разделить на две равные группы так, чтоб в каждой была женская фамилия?

8. Из колоды в 36 карт выбирают 4 . Сколько способов сделать это так, чтобы: 1) все карты были разных мастей; 2) все карты были одной масти; 3) 2 красные и 2 черные.

9. На карточках разрезной азбуки даны буквы К, К, К, У, У, А, Е, Р. Сколько способов сложить их в ряд так, что бы получилось «кукареку».

10. Даны карточки разрезанной азбуки с буквами О, Т, О, Л, О, Р, И, Н, Г, О, Л, О, Г. Сколько способов сложить их так, что бы получилось слово «отолоринголог».

11. Даны карточки нарезной азбуки с буквами Л, И, Т, Е, Р, А, Т, У, Р, А. Сколько способов сложить их в ряд так, что бы получилось слово «литература».

12. 8 человек становятся в очередь. Сколько способов сделать это так, что бы два определенных человека А и Б оказались: 1) рядом; 2) на краях очереди;

13. 10 человек садятся за круглый стол на 10 мест. Сколькими способами это можно сделать так, чтоб рядом оказались: 1) два определенных человека А и Б; 2) три определенных человека А, Б и С.

14. Из 10 арабских цифр составляют 5-значный код. Сколькими способами это можно сделать так, чтобы: 1) все цифры были разными; 2) на последнем месте четная цифра.

15. Из 26 букв латинского алфавита (среди них 6 гласных) составляется шестибуквенное слово. Сколькими способами это можно сделать так, чтобы в слове были: 1) ровно одна буква «а»; 2) ровно одна гласная буква; ровно две буквы «а»; в) ровно две гласные.

16. Сколько четырехзначных чисел делятся на 5?

17. Сколько четырехзначных чисел с различными цифрами делятся на 25?

19. Брошены 3 игральные кости. В скольких случаях выпала: 1) ровно 1 «шестерка»; 2) хотя бы одна «шестерка».

20. Брошены 3 игральные кости. В скольких случаях будет: 1) все разные; 2) ровно два одинаковых числа очков.

21. Сколько слов с различными буквами можно составить из алфавита а, в, с, d. Перечислить их все в лексикографическом порядке: abcd, abcd….




Перестановки. Формула для числа перестановок

Перестановки из n элементов

Пусть множество Х состоит из n элементов.

Определение. Размещение без повторений из n элементов множества X по n называется перестановкой из n элементов.

Заметим, что в любую перестановку входят все элементы множества Х , причём ровно по одному разу. То есть перестановки одна от другой отличаются только порядком следования элементов и могут получиться одна из другой перестановкой элементов (отсюда и название).

Число всех перестановок из n элементов обозначается символом .

Так как перестановки – это частный случай размещений без повторений при , то формулу для нахождения числа получим из формулы (2), подставляя в неё :

Таким образом,

(3)

Пример. Сколькими способами можно разместить на полке 5 книг?

Решение. Способов размещения книг на полке существует столько, сколько существует различных перестановок из пяти элементов: способов.

Замечание. Формулы (1)-(3) запоминать не обязательно: задачи на их применение всегда можно решить с помощью правила произведения. Если у учащихся существуют проблемы с составлением комбинаторных моделей задач, то лучше сделать более узким множество используемых формул и правил (чтобы было меньше возможности ошибиться). Правда, задачи, в которых используются перестановки и формула (3), обычно решаются без особых проблем.

Задачи

1. Ф. Сколькими способами могут встать в очередь в билетную кассу: 1) 3 человека; 2) 5 человек?

Решение.

Различные варианты расположения п человек в очереди отличаются один от другого только порядком расположения людей, т. е. являются различными перестановками из п элементов.

Три человека могут встать в очередь Р3 = 3! = 6 различными способами.

Ответ: 1) 6 способов; 2) 120 способов.

2. Т. Сколькими способами 4 человека могут разместиться на четырехместной скамейке?

Решение.

Количество человек равно количеству мест на скамейке, поэтому количество способов размещения равно числу перестановок из 4 элементов: Р4 = 4! = 24.

Можно рассуждать по правилу произведения: для первого человека можно выбрать любое из 4 мест, для второго - любое из 3 оставшихся, для третьего - любое из 2 оставшихся, последний займет 1 оставшееся место; всего есть = 24 разных способов Размещения 4 человек на четырехместной скамейке.

Ответ: 24 способами.

3. М. У Вовы на обед - первое, второе, третье блюда и пирожное. Он обязательно начнет с пирожного, а все остальное съест в произвольном порядке. Найдите число возможных вариантов обеда.

М- задачи из уч. пособия А.Г.Мордковича

Т- под ред. С.А.Теляковского

Ф- М.В.Ткачевой

Решение.

После пирожного Вова может выбрать любое из трех блюд, затем - из двух, и закончить оставшимся. Общее число возможных вариантов обеда: =6.

Ответ: 6.

4. Ф. Сколько различных правильных (с точки зрения русского языка) фраз можно составить, изменяя порядок слов в предложении: 1) «Я пошел гулять»; 2) «Во дворе гуляет кошка»?

Решение.

Во втором предложении предлог «во» должен всегда стоять перед существительным «дворе», к которому он относится. Поэтому, считая пару «во дворе» за одно слово, можно найти количество различных перестановок трех условных слов: Р3 = 3! = 6. Таким образом, и в этом случае можно составить 6 правильных предложений.

Ответ: 1) 6; 2) 6.

5. Сколькими способами можно с помощью букв К, L, М, Н обозначить вершины четырехугольника?

Решение.

Будем считать, что вершины четырехугольника пронумерованы, за каждой закреплен постоянный номер. Тогда задача сводится к подсчету числа разных способов расположения 4 букв на 4 местах (вершинах), т. е. к подсчету числа различных перестановок: Р4 = 4! =24 способа.

Ответ: 24 способа.

6. Ф. Четыре друга купили билеты в кино: на 1-е и 2-е места в первом ряду и на 1-е и 2-е места во втором ряду. Сколькими способами друзья могут занять эти 4 места в кинотеатре?

Решение.

Четыре друга могут занять 4 разных места Р4 = 4! = 24 различными способами.

Ответ: 24 способа.

7. Т. Курьер должен разнести пакеты в 7 различных учреждений. Сколько маршрутов может он выбрать?

Решение.

Под маршрутом следует понимать порядок посещения курьером учреждений. Пронумеруем учреждения номерами от 1 до 7, тогда маршрут будет представляться последовательностью из 7 Цифр, порядок которых может меняться. Количество маршрутов равно числу перестановок из 7 элементов: Р7= 7! = 5 040.

Ответ: 5 040 маршрутов.

8. Т. Сколько существует выражений, тождественно равных произведению abcde, которые получаются из него перестановкой множителей?

Решение.

Дано произведение пяти различных сомножителей abcde, порядок которых может меняться (при перестановке множителей произведение не меняется).

Всего существует Р5 = 5! = 120 различных способов расположения пяти множителей; один из них (abcde) считаем исходным, остальные 119 выражений тождественно равны данному.

Ответ: 119 выражений.

9. Т. Ольга помнит, что телефон подруги оканчивается цифрами 5, 7, 8, но забыла, в каком порядке эти цифры следуют. Укажите наибольшее число вариантов, которые ей придется перебрать, чтобы дозвониться подруге.

Решение.

Три последних цифры телефонного номера могут быть расположены в одном из Р3 =3! =6 возможных порядков, из которых только один верный. Ольга может сразу набрать верный вариант, может набрать его третьим, и т. д. Наибольшее число вариантов ей придется набрать, если правильный вариант окажется последним, т. е. шестым.

Ответ: 6 вариантов.

10. Т. Сколько шестизначных чисел (без повторения цифр) можно составить из цифр: а) 1,2, 5, 6, 7, 8; б) 0, 2, 5, 6, 7, 8? Решение.

а) Дано 6 цифр: 1, 2, 5, 6, 7, 8, из них можно составлять разные шестизначные числа, только переставляя эти цифры местами. Количество различных шестизначных чисел при этом равно Р6 = 6! = 720.

б) Дано 6 цифр: 0, 2, 5, 6, 7, 8, из них нужно составлять различные шестизначные числа. Отличие от предыдущей задачи состоит в том, что ноль не может стоять на первом месте.

Можно напрямую применить правило произведения: на первое место можно выбрать любую из 5 цифр (кроме нуля); на второе место - любую из 5 оставшихся цифр (4 «ненулевые» и теперь считаем ноль); на третье место - любую из 4 оставшихся после первых двух выборов цифр, и т. д. Общее количество вариантов равно: = 600.

Можно применить метод исключения лишних вариантов. 6 цифр можно переставить Р6 = 6! = 720 различными способами. Среди этих способов будут такие, в которых на первом месте стоит ноль, что недопустимо. Подсчитаем количество этих недопустимых вариантов. Если на первом месте стоит ноль (он фиксирован), то на последующих пяти местах могут стоять в произвольном порядке «ненулевые» цифры 2, 5, 6, 7, 8. Количество различных способов, которыми можно разместить 5 цифр на 5 местах, равно Р5 = 5! = 120, т. е. количество перестановок чисел, начинающихся с нуля, равно 120. Искомое количество различных шестизначных чисел в этом случае равно: Р6 - Р5 = 720 - 120 = 600.

Ответ: а) 720; б) 600 чисел.

11. Т. Сколько среди четырехзначных чисел (без повторения цифр), составленных из цифр 3, 5, 7, 9, таких, которые: а) начинаются с цифры 3;

б) кратны 15?

Решение.

а) Из цифр 3, 5, 7, 9 составляем четырехзначные числа, начинающиеся с цифры 3.

Фиксируем цифру 3 на первом месте; тогда на трех оставшихся местах в произвольном порядке могут располагаться цифры 5, 7 9 Общее количество вариантов их расположения равно Р 3 = 3!=6. Столько и будет разных четырехзначных чисел, составленных из данных цифр и начинающихся с цифры 3.

б) Заметим, что сумма данных цифр 3 + 5 + 7 + 9 = 24 делится на 3, следовательно, любое четырехзначное число, составленное из этих цифр, делится на 3. Для того, чтобы некоторые из этих чисел делились на 15, необходимо, чтобы они заканчивались цифрой 5.

Фиксируем цифру 5 на последнем месте; остальные 3 цифры можно разместить на трех местах перед 5 Рз = 3! = 6 различными способами. Столько и будет разных четырехзначных чисел, составленных из данных цифр, которые делятся на 15.

Ответ: а) 6 чисел; б) 6 чисел.

12. Т. Найдите сумму цифр всех четырехзначных чисел, которые можно составить из цифр 1, 3, 5, 7 (без их повторения).

Решение.

Каждое четырехзначное число, составленное из цифр 1, 3, 5, 7 (без повторения), имеет сумму цифр, равную 1+3 + 5 + 7=16.

Из этих цифр можно составить Р4 = 4! = 24 различных числа, отличающихся только порядком цифр. Сумма цифр всех этих чисел будет равна

16 = 384.

Ответ: 384.

13. Т. Семь мальчиков, в число которых входят Олег и Игорь, становятся в ряд. Найдите число возможных комбинаций, если:

а) Олег должен находиться в конце ряда;

б) Олег должен находиться в начале ряда, а Игорь - в конце ряда;

в) Олег и Игорь должны стоять рядом.
Решение.

а) Всего 7 мальчиков на 7 местах, но один элемент фиксирован, не переставляется (Олег находится в конце ряда). Число возможных комбинаций при этом равно числу перестановок 6 мальчиков, стоящих перед Олегом: Р6=6!=720.

пару как единый элемент, переставляемый с другими пятью элементами. Число возможных комбинаций тогда будет Р6 = 6! = 720.

Пусть теперь Олег и Игорь стоят рядом в порядке ИО. Тогда получим еще Р6 = 6! = 720 других комбинаций.

Общее число комбинаций, в которых Олег и Игорь стоят рядом (в любом порядке) равно 720 + 720 = 1 440.

Ответ: а) 720; б) 120; в) 1 440 комбинаций.

14. М. Одиннадцать футболистов строятся перед началом матча. Первым становится капитан, вторым - вратарь, а остальные - случайным образом. Сколько существует способов построения?

Решение.

После капитана и вратаря третий игрок может выбрать любое из 9 оставшихся мест, следующий - из 8, и т. д. Общее число способов построения по правилу произведения равно:

1 =362 880, или Р 9 = 9! = 362 880.

Ответ: 362 880.

15. М. Сколькими способами можно обозначить вершины куба буквами А, В, С, D, E, F, G, K?

Решение.

Для первой вершины можно выбрать любую из 8 букв, для второй - любую из 7 оставшихся, и т. д. Общее число способов по правилу произведения равно =40 320, или Р8 = 8!

Ответ: 40 320.

16. Т. В расписании на понедельник шесть уроков: алгебра, геометрия, биология, история, физкультура, химия. Сколькими способами можно составить расписание уроков на этот день так, чтобы два урока математики стояли рядом?

Решение.

Всего 6 уроков, из них два урока математики должны стоять рядом.

«Склеиваем» два элемента (алгебра и геометрия) сначала в порядке АГ, затем в порядке ГА. При каждом варианте «склеивания» получаем Р5 = 5! = 120 вариантов расписания. Общее число способов составить расписание равно120 (AГ) +120 (ГА) = 240.

Ответ: 240 способов.

17. Т. Сколько существует перестановок букв слова «конус», в которых буквы К, О, Н стоят рядом?

Решение.

Дано 5 букв, из которых три буквы должны стоять рядом. Три буквы К, О, Н могут стоять рядом одним из Р3 = 3! = 6 способов. Для каждого способа «склеивания» букв К, О, Н получаем Р3 = 3! = 6 способов перестановки букв, «склейка», У, С. Общее число различных перестановок букв слова «конус», в которых буквы К, О, Н стоят рядом, равно 6 6 = 36 перестановок- анаграмм.

Ответ: 36 анаграмм.

18. Т. Сколькими способами 5 мальчиков и 5 девочек могут занять в театре в одном ряду места с 1 по 10? Сколькими способами они могут это сделать, если мальчики будут сидеть на нечетных местах, а девочки - на четных?

Решение.

Каждый вариант расположения мальчиков может сочетаться с каждым из вариантов расположения девочек, поэтому по правилу произведения общее число способов рассадить детей в этом случае равно 120 20= 14400.

Ответ: 3 628 800 способов; 14 400 способов.

19. Т. Пять мальчиков и четыре девочки хотят сесть на девятиместную скамейку так, чтобы каждая девочка сидела между двумя мальчиками. Сколькими способами они могут это сделать?

Решение.

По условию задачи мальчики и девочки должны чередоваться, т. е. девочки могут сидеть только на четных местах, а мальчики -только на нечетных. Поэтому меняться местами девочки могут только с девочками, а мальчики - только с мальчиками. Четырех девочек можно рассадить на четырех четных местах Р4 = 4! = 24 способами, а пятерых мальчиков на пяти нечетных местах Р5 = 5! = 120 способами.

Каждый способ размещения девочек может сочетаться с каждым способом размещения мальчиков, поэтому по правилу произведения общее число способов равно: Р4 20 = 2 880 способов.

Ответ: 2 880 способов.

20. Ф. Разложить на простые множители числа 30 и 210. Сколькими способами можно записать в виде произведения продых множителей число: 1) 30; 2) 210?

Решение.

Разложим данные числа на простые множители:

30 = 2 ; 210 = 2 .

    Число 30 можно записать в виде произведения простых множителей

Р 3 = 3! = 6 разными способами (переставляя множители).

    Число 210 можно записать в виде произведения простых
    множителей Р 4 = 4! = 24 разными способами.

Ответ: 1) 6 способов; 2) 24 способа.

21. Ф. Сколько различных четных четырехзначных чисел с неповторяющимися цифрами можно записать, используя цифры 1, 2, 3, 5?

Решение.

Чтобы число было четным, оно должно заканчиваться четной цифрой, т. е. 2. Зафиксируем двойку на последнем месте, остальные три цифры должны стоять перед ней в произвольном порядке. Количество различных перестановок из 3 цифр равно P3 = 3! = 6; следовательно, различных четных четырехзначных чисел будет также 6 (к каждой перестановке из трех цифр добавляется цифра 2).

Ответ: 6 чисел.

22. Ф. Сколько различных нечетных пятизначных чисел, в которых нет одинаковых цифр, можно записать с помощью Цифр 1,2, 4, 6, 8?

Решение.

Чтобы составленное число было нечетным, необходимо, чтобы оно оканчивалось нечетной цифрой, т. е. единицей. Остальные 4 Цифры можно переставлять местами, располагая каждую перестановку перед единицей.

Общее число нечетных пятизначных чисел равно числу перестановок: Р4 = 4! =24.

23. Ф. Сколько различных шестизначных чисел с неповторяющимися цифрами можно записать с помощью цифр 1; 2 3, 4, 5, 6, если: 1) число должно начинаться с 56; 2) цифры 5 и 6 в числе должны стоять рядом?

Решение.

Две цифры 5 и 6 фиксируем в начале числа и дописываем к ним различные перестановки из 4 оставшихся цифр; количество различных шестизначных чисел равно: Р4 = 4! = 24.

Общее количество различных шестизначных чисел, в которых цифры 5 и 6 стоят рядом (в любом порядке), равно 120 + 120 = 240 чисел. (Варианты 56 и 65 несовместны, не могут реализоваться одновременно; применяем комбинаторное правило суммы.)

Ответ: 1) 24 числа; 2) 240 чисел.

24. Ф. Сколько различных четных четырехзначных чисел, в записи которых нет одинаковых цифр, можно составить из цифр 1,2,3,4?

Решение.

Четное число должно оканчиваться четной цифрой. Фиксируем на последнем месте цифру 2, тогда 3 предшествующие цифры можно переставить Р3 = 3! = 6 различными способами; получим 6 чисел с двойкой на конце. Фиксируем на последнем месте цифру 4, получим Р3 = 3! = 6 различных перестановок трех предшествующих цифр и 6 чисел, оканчивающихся цифрой 4.

Общее количество четных четырехзначных чисел будет 6 + 6 = 12 различных чисел.

Ответ: 12 чисел.

Замечание. Общее количество вариантов мы находим, пользуясь комбинаторным правилом суммы (6 вариантов чисел, оканчивающихся двойкой, 6 вариантов чисел, оканчивающихся четверкой; способы построения чисел с двойкой и с четверкой на конце являются взаимоисключающими, несовместными, поэтому общее количество вариантов равно сумме числа вариантов с двойкой на конце и числа вариантов с 4 на конце). Запись 6 + 6 = 12 лучше отражает основания наших действий, чем запись Р .

25. Ф. Сколькими способами можно записать в виде произведения простых множителей число 1) 12; 2) 24; 3) 120?

Решение.

Особенностью этой задачи является то, что в разложении каждого из данных чисел есть одинаковые, повторяющиеся множители. При образовании различных перестановок из множителей мы не получим новую перестановку, если поменяем местами какие-нибудь два одинаковых множителя.

1) Число 12 разлагается на три простых множителя, два из которых одинаковы: 12 = .

Если бы все множители были различны, то их можно было бы переставить в произведении Р3 = 3! = 6 различными способами. Чтобы перечислить эти способы, условно «различим» две двойки, подчеркнем одну из них: 12 = 2 .

Тогда возможны следующие 6 вариантов разложения на жители:

Но на самом деле подчеркивание цифр не имеет в математике никакого значения, поэтому полученные 6 перестановок в обычной записи имеют вид:

т. е. фактически мы получили не 6, а 3 различные перестановки Количество перестановок уменьшилось в два раза за счет того, что мы не должны учитывать перестановки двух двоек между собой.

Обозначим Р х искомое число перестановок из трех элементов среди которых два одинаковых; тогда полученный нами результат можно записать так: Рз = Р х Но 2 - это количество разных перестановок из двух элементов, т. е. 2 = = 2! = Р 2 , поэтому Р3, = Р х Р 2 , отсюда Р х = . (это формула для числа перестановок с повторениями).

Можно рассуждать иначе, основываясь только на комбинаторном правиле произведения.

Чтобы составить произведение из трех множителей, сначала выберем место для множителя 3; это можно сделать одним из трех способов. После этого оба оставшихся места заполняем двойками; это можно сделать 1 способом. По правилу произведения общее число способов равно: 3-1 =3. , Р х =20.

Второй способ. Составляя произведение из пяти множителей, сначала выберем место для пятерки (5 способов), затем для тройки (4 способа), а оставшиеся 3 места заполним двойками (1 способ); по правилу произведения 5 4 1 = 20.

Ответ: 1) 3; 2) 4; 3) 20.

26. Ф. Сколькими способами можно закрасить 6 клеток таким образом, чтобы 3 клетки были красными, а 3 оставшиеся были закрашены (каждая своим цветом) белым, черным или зеленым?

Решение.

Перестановки из 6 элементов, среди которых три - одинаковые:

Иначе: для закраски белым цветом можно выбрать одну из 6 клеток, черным - из 5, зеленым - из 4; три оставшиеся клетки закрашиваем красным цветом. Общее число способов: 6 5 4 1 = 120.

Ответ: 120 способов.

27.Т. Пешеход должен пройти один квартал на север и три квартала на запад. Выпишите все возможные маршруты пешехода. = 4.

Ответ: 4 маршрута.

28. М. а) На дверях четырех одинаковых кабинетов надо повесить таблички с фамилиями четырех заместителей директора. Сколькими способами это можно сделать?

б) В 9 «А» классе в среду 5 уроков: алгебра, геометрия, физкультура, русский язык, английский язык. Сколько можно составить вариантов расписания на этот день?

в) Сколькими способами четыре вора могут разбежаться по одному на все четыре стороны?

г) Адъютант должен развезти пять копий приказа генерала пяти полкам. Сколькими способами он может выбрать маршрут доставки копий приказа?

Решение.

а) Для первой таблички можно выбрать любой из 4 кабинетов,
Для второй - любой из трех оставшихся, для третьей - любой из двух оставшихся, для четвертой - один оставшийся; по правилу
произведения общее число способов равно: 4 3 2 1 = 24, или Р4 = 4! = 24. = 120, или Р5 = 5! = 120.

Ответ: а) 24; б) 120; в) 24; г) 120.

Литература

    Афанасьев В.В. Теория вероятностей в примерах и задачах, - Ярославль: ЯГПУ, 1994.

    Баврин И. И. Высшая математика: Учебник для студентов химико-математических специальностей педагогических вузов-2-е издание, переработанное. - М.:Просвещение, 1993.

    Бунимович Е. А., Булычёв В.А. Вероятность и статистика. 5-9 классы: Пособие для общеобразовательных учебных заведений, - М.:Дрофа, 2005.

    Виленкин Н. Я. и другие. Алгебра и математический анализ для 10 класса: Учебное пособие для учащихся школ и классов с углублённым изучением математики. - М.:Просвещение,1992.

    Виленкин Н. Я. и другие. Алгебра и математический анализ для 11 класса: Учебное пособие для учащихся школ и классов с углублённым изучением математики - М.:Просвещение, 1990.

    Глейзер Г.И. История математики в школе: 9-10 класс. Пособие для учителей. - М.: Просвещение 1983.

    Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. Математика 9:Алгебра. Функции. Анализ данных - М.: Дрофа, 2000.

    Колягин и другие. Алгебра и начала анализа 11 класс. Математика в школе - 2002 - №4 - с.43,44,46.

    Люпшкас В.С. Факультативные курсы по математике: теория вероятностей: Учебное пособие для 9-11 классов.- М.,1991.

    Макарычев Ю.Н., Миндюк Н.Г. Элементы статистики и теории вероятностей: Учебное пособие для учащихся 7-9 классов.- М.: Просвещение, 2005.

    Мордкович А.Г., Семенов П.В. Алгебра и начала анализа 10 класс: Учебник для общеобразовательных учреждений (профильный уровень) – М.: Мнемозина, 2005.

    Ткачева М.В., Федорова Н.Е. Элементы статистики и вероятность: Учебное пособие для учащихся 7-9 классов.- М.: Просвещение, 2005.

Цель занятия: уметь применять основные формулы комбинаторики и знать условия применения этих формул; знать свойства биномиальных коэффициентов и уметь определять разложение бинома при конкретных значениях n.

План занятия:

1. Число размещений.

2. Число перестановок.

3. Число сочетаний.

4. Повторения.

5. Бином Ньютона. Треугольник Паскаля.

Методические указания по изучению темы

Во многих практических случаях возникает необходимость подсчитать количество возможных комбинаций объектов, удовлетворяющих определенным условиям. Такие задачи называются комбинаторными. Разнообразие комбинаторных задач не поддается исчерпывающему описанию, но среди них есть целый ряд особенно часто встречающихся, для которых известны способы подсчета.

Комбинаторика – область математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из элементов, принадлежащих данному множеству. Термин «комбинаторика» происходит от латинского слова combina – сочетать, соединять.

Пусть есть некоторое множество из n элементов: x 1, x 2, x 3, …, x n .

Из этого множества можно образовать различные подмножества, то есть выборки, каждая из которых содержит m элементов (0 ≤ m ≤ n). Различают упорядоченные выборки (размещения), перестановки и неупорядоченные выборки (сочетания).

Размещения

Размещениями n различных элементов по m элементов, которые отличаются либо составом элементов, либо их порядком.

Число размещений из n элементов по m элементов обозначают (А – первая буква французского слова arrangement, что означает размещение, приведение в порядок) и вычисляют по формуле:

Понятие факториала

Произведение n натуральных чисел от 1 до n обозначается символом n ! (n факториал), то есть

Например, 2!=

5!=

Заметим, что удобно рассчитывать 0!, полагая по определению, 0!=1.

Примеры:

Из последних двух формул следует, что

Пример.

В однокруговом турнире по футболу участвуют 8 команд. Сколько существует вариантов призовой тройки?

Решение : Так как порядок команд в призовой тройке важен, то мы имеем дело с размещениями. Тогда

(вариантов).

Пример.

Сколькими способами можно выбрать три лица на три различные должности из десяти кандидатов?

Решение:

(способов).

Пример.

Сколько можно составить телефонных номеров из 5 цифр так, чтобы в каждом отдельно взятом номере все цифры были различными?

(телефонных номеров).

Перестановки

Перестановками называют комбинации, состоящие из одних и тех же n различных элементов и отличающиеся только порядком их расположения.

Число всех возможных перестановок из n элементов обозначают P n (P – первая буква французского слова permutation, что означает перестановка) и вычисляют по формуле:

Пример.

В финальном забеге на 100 метров участвуют 8 спортсменов. Сколько существует вариантов протокола забега?

Решение:

В данном случае речь идёт обо всех перестановках из 8 элементов. Тогда (вариантов)

Пример.

Сколькими различными способами могут разместиться на скамейке10 человек?

Решение:

(способов)

Пример.

Сколькими способами можно разместить 7 лиц за столом, на котором поставлено 7 столовых приборов?

Решение:

(способов).

Сочетания

Сочетаниями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются хотя бы одним элементом.

Число сочетаний вычисляют по формуле: (С - первая буква французского слова combinasion).

Пример.

Сколькими способами можно выбрать три лица на три одинаковые должности из десяти кандидатов?

Решение :

(способов).

Пример.

Сколькими способами можно выбрать три детали из ящика, содержащего 15 деталей?

Решение:

(способов).

Другой вид формул числа размещений и числа сочетаний

; , то есть .

Свойства числа сочетаний:

5)

При решении задач комбинаторики используют следующие правила:

Правило суммы. Если некоторый объект А может быть выбран из совокупности объектов n способами, а другой объект В – k способами, то объект «либо А, либо В» можно выбрать n+k способами.

Правило произведения. Если некоторый объект А может быть выбран из совокупности объектов n способами и после каждого такого выбора другой объект В – k способами, то пара объектов (А, В) в указанном порядке может быть выбрана n×k способами.

Если некоторые элементы повторяются, то в этом случае комбинации с повторениями вычисляют по другим формулам.

Размещения с повторениями

Число размещений по m элементов с повторениями из n различных элементов равно n m ,то есть

Пример.

Из цифр 1,2,3,4,5 можно составить 5 3 =125 трехзначных чисел, если в одном и том же числе могут попадаться и одинаковые цифры.

Перестановки с повторениями

Если среди n элементов есть n 1 элементов одного вида, n 2 элементов другого вида и т.д., то число перестановок с повторениями

где

Пример.

Сколько различных перестановок букв можно сделать в слове «математика»?

Решение:

Сочетания с повторениями

Число сочетаний с повторениями из n различных элементов по m элементов равно числу сочетаний без повторений из (n +m -1) различных элементов по m элементов:

Пример.

Найти число сочетаний с повторениями из четырех элементов a , b , c , d по 3 элемента.

Решение:

Искомое число будет

Бином Ньютона

Для произвольного положительного целого числа n справедлива следующая формула:

Это бином Ньютона. Коэффициенты называются биномиальными коэффициентами.

При n = 2 получим формулу ;

При n = 3 получим формулу .

Пример. Определить разложение при n=4.

Решение:

Биномиальные коэффициенты обладают рядом свойств:

2. ;

Рассмотрим следующий треугольник:

………………………….

Строка под номером n содержит биномиальные коэффициенты разложения . Воспользовавшись свойством , можно заметить, что каждый внутренний элемент треугольника равен сумме двух элементов, расположенных над ним, а боковые элементы треугольника – единицы:

……………………….

Это треугольник Паскаля. Он позволяет быстро найти значения биномиальных коэффициентов.

В русскоязычной литературе перестановки, составленные из n различных элементов выбором по m элементов, которые отличаются либо составом элементов, либо их порядком, обычно называют размещениями, а под перестановками понимают всю совокупность комбинаций, состоящих из одних и тех же n различных элементов и отличающихся только порядком их расположения. В этом смысле число всех возможных перестановок для множества из n различных элементов считается по формуле факториала Pn = n! или в Excel «=ФАКТР(N)» (см. рис. № 1)




Например, если ввести «=ПЕРЕСТ(3;2)», получим 6. Это 6 комбинации: (1,2), (2,1), (1,3), (3,1), (2,3), (3,2).

А вот встроенная функция «=ЧИСЛКОМБ(N;K)» выдает комбинаторную формулу, называемую у нас «Число сочетаний». В русскоязычной литературе так именуют перестановки, составленные из n различных элементов выбором по m элементов, которые отличаются только составом элементов, а порядок их выбора безразличен (см. рис, №4)


При использовании встроенных функций пользуйтесь «Справкой по этой функции». Например:

Задачи для самостоятельного решения

1. Вычислить:

2. Вычислить:

3. Вычислить:

4. Найти n , если 5С n 3 =

5. Найти n , если

6. Найти n , если

7. Найти n , если

8. Найти n , если , k n

9. Решить уравнение

10. Решить систему

11. Сколько можно составить сигналов из 6 флажков различного цвета, взятых по 2?

12. Сколькими способами можно выбрать четыре лица на четыре различные должности из девяти кандидатов?

13. Сколько можно составить телефонных номеров из 6 цифр так, чтобы в каждом отдельно взятом номере все цифры были различны?

14. В классе 10 учебных предметов и 5 разных уроков в день. Сколькими способами могут быть распределены уроки в один день?

15. Сколько можно записать четырёхзначных чисел, используя без повторения все 10 цифр?

16. Фирма производит выбор из девяти кандидатов на три различные должности. Сколько существует способов такого выбора?

17. В восьмом классе изучается 15 предметов. Сколькими способами можно составить расписание на среду, если известно, что в этот день должно быть 6 уроков?

18. В высшей лиге чемпионата страны по футболу 16 команд. Борьба идет за золотые, серебряные и бронзовые медали. Сколькими способами медали могут быть распределены между командами?

19. Сколькими способами можно разместить 9 лиц за столом, на котором поставлено 9 приборов?

20. На собрании выступят 6 ораторов. Сколькими способами их фамилии можно расположить в списке?

21. Сколько трехзначных чисел можно составить из цифр 1, 2, 3, если каждая цифра входит в изображение числа только один раз?

22. Сколькими различными способами можно расставить 10 различных книг на полке, чтобы определённые 4 книги стояли рядом?

23. В однокруговом турнире по футболу участвуют 8 команд. Сколько всего матчей будет сыграно?

24. Из 25 студентов нужно выбрать трех делегатов на конференцию. Сколькими способами это можно сделать?

25. Сколькими способами можно выбрать две детали из ящика, содержащего 10 деталей?

26. В колоде 36 карт, из них 4 туза. Сколькими способами можно извлечь 6 карт так, чтобы среди них было 2 туза?

27. Комплексная бригада состоит из двух маляров, трёх штукатуров и одного столяра. Сколько различных бригад можно создать из рабочего коллектива, в котором 15 маляров, 10 штукатуров и 5 столяров?

28. В отборочном турнире за 3 путёвки на чемпионат мира участвуют 10 команд. Сколько существует вариантов «счастливой тройки»?

29. Из 12 человек выбирают четверых для назначения на 4 одинаковые должности. Сколькими способами можно сделать такой выбор?

30. Сколькими различными способами можно составить разведывательную группу из 3-х солдат и одного командира, если имеется 12 солдат и 3 командира?

31. На плоскости дано n точек, из которых никакие три не лежат на одной прямой. Найти число прямых, которые можно получить, соединяя точки попарно.

32. Буквы азбуки Морзе образуются как последовательность точек и тире. Сколько различных букв можно образовать, если использовать 5 символов?

33. Сколько существует различных семизначных телефонных номеров?

34. Пусть буквы некоторой азбуки образуются как последовательность точек, тире и пробелов. Сколько различных букв можно образовать, если использовать 5 символов?

35. При игре в бридж между четырьмя игроками распределяется колода карт в 52 листа по 13 карт каждому игроку. Сколько существует различных способов раздать карты?

36. В почтовом отделении продаются открытки пяти видов. Определить число способов покупки семи открыток.

37. Два коллекционера обмениваются марками. Найти число способов обмена, если первый коллекционер обменивает 3 марки, а второй – 6 марок. (Обмен происходит по одной марке).

38. У одного студента 6 книг по математике, а у другого – 5. Сколькими способами они могут обменять 2 книги одного на 2 книги другого?

39. Сколько различных перестановок букв можно сделать в словах: «замок», «ротор», «обороноспособность», «колокол», «семинар»?

40. Сколькими различными способами можно разместить в 9 клетках следующие 9 букв: а, а, а, б, б, б, в, в, в?

41. В автомашине 6 мест. Сколькими способами 6 человек могут сесть в эту машину, если занять место водителя могут только двое из них?

42. Сколькими способами из колоды в 52 карты можно извлечь 6 карт, содержащих туза и короля одной масти?

43. Определить разложение при n=5.

44. Определить разложение при n=8.

45. Найти член разложения , не содержащий x (то есть содержащий x в нулевой степени).

46. Найти шестой член разложения , если биномиальный коэффициент третьего от конца члена равен 45.

47. В разложении коэффициент третьего члена на 44 больше коэффициента второго члена. Найти свободный член, то есть член разложения, не зависящий от x (членом, не зависящим от x, будет тот, который содержит x в нулевой степени).

48. В разложении бинома найти члены, не содержащие иррациональности.

49. Найти номер того члена разложения , который содержит a и b в одинаковых степенях.

Практическое занятие №2

(интерактивное занятие в малых группах)

Булевы функции

Цель занятия: уметь строить различные булевы функции, проверять эквивалентность булевых формул (используя таблицу истинности), определять существенные и фиктивные переменные.

План занятия:

1. Основные операции

2. Булевы функции от n переменных

3. Основные эквивалентности

Чтобы в материале было легче ориентироваться, добавлю содержание данной темы:

Введение. Множества и выборки.

В этой теме рассмотрим основные понятия комбинаторики: перестановки, сочетания и размещения. Выясним их суть и формулы, по которым можно найти их количество.

Для работы нам понадобятся кое-какие вспомогательные сведения. Начнём с такого фундаментального математического понятия как множество. Подробно понятие множества было раскрыто в теме "Понятие множества. Способы задания множеств" .

Очень краткий рассказ про множества : показать\скрыть

Если вкратце: множеством именуют некую совокупность объектов. Записывают множества в фигурных скобках. Порядок записи элементов роли не играет; повторения элементов не допускаются. Например, множество цифр числа 11115555999 будет таким: $\{1,5,9 \}$. Множество согласных букв в слове "тигрёнок" таково: $\{т, г, р, н, к\}$. Запись $5\in A$ означает, что элемент 5 принадлежит множеству $A=\{1,5,9 \}$. Количество элементов в конечном множестве называют мощностью этого множества и обозначают $|A|$. Например, для множества $A=\{1,5,9 \}$, содержащего 3 элемента, имеем: $|A|=3$.

Рассмотрим некое непустое конечное множество $U$, мощность которого равна $n$, $|U|=n$ (т.е. в множестве $U$ имеется $n$ элементов). Введём такое понятие, как выборка (некоторые авторы именуют её кортежем). Под выборкой объема $k$ из $n$ элементов (сокращённо $(n,k)$-выборкой) будем понимать набор элементов $(a_1, a_2,\ldots, a_k)$, где $a_i\in U$. Выборка называется упорядоченной, если в ней задан порядок следования элементов. Две упорядоченные выборки, различающиеся лишь порядком элементов, являются различными. Если порядок следования элементов выборки не является существенным, то выборку именуют неупорядоченной.

Заметьте, что в определении выборки ничего не сказано про повторения элементов. В отличие от элементов множеств, элементы выборки могут повторяться.

Для примера рассмотрим множество $U=\{a,b,c,d,e\}$. Множество $U$ содержит 5 элементов, т.е. $|U|=5$. Выборка без повторений может быть такой: $(a,b,c)$. Данная выборка содержит 3 элемента, т.е. объём этой выборки равен 3. Иными словами, это $(5,3)$-выборка.

Выборка с повторениями может быть такой: $(a,a,a,a,a,c,c,d)$. Она содержит 8 элементов, т.е. объём её равен 8. Иными словами, это $(5,8)$-выборка.

Рассмотрим ещё две $(5,3)$-выборки: $(a,b,b)$ и $(b,a,b)$. Если мы полагаем наши выборки неупорядоченными, то выборка $(a,b,b)$ равна выборке $(b,a,b)$, т.е. $(a,b,b)=(b,a,b)$. Если мы полагаем наши выборки упорядоченными, то $(a,b,b)\neq(b,a,b)$.

Рассмотрим ещё один пример, немного менее абстрактный:) Предположим, в корзине лежат шесть конфет, причём все они различны. Если первой конфете поставить в соответствие цифру 1, второй конфете - цифру 2 и так далее, то с конфетами в корзине можно сопоставить такое множество: $U=\{1,2,3,4,5,6\}$. Представьте, что мы наугад запускаем руку в корзинку с целью вытащить три конфеты. Вытащенные конфеты - это и есть выборка. Так как мы вытаскиваем 3 конфеты из 6, то получаем (6,3)-выборку. Порядок расположения конфет в ладони совершенно несущественен, поэтому эта выборка является неупорядоченной. Ну, и так как все конфеты различны, то выборка без повторений. Итак, в данной ситуации говорим о неупорядоченной (6,3)-выборке без повторений.

Теперь подойдём с иной стороны. Представим себе, что мы находимся на фабрике по производству конфет, и на этой фабрике производятся конфеты четырёх сортов. Множество $U$ в этой ситуации таково: $U=\{1,2,3,4 \}$ (каждая цифра отвечает за свой сорт конфет). Теперь вообразим, что все конфеты ссыпаются в единый жёлоб, около которого мы и стоим. И, подставив ладони, из этого потока отбираем 20 конфет. Конфеты в горсти – это и есть выборка. Играет ли роль порядок расположения конфет в горсти? Естественно, нет, поэтому выборка неупорядоченная. Всего 4 сорта конфет, а мы отбираем двадцать штук из общего потока - повторения сортов неизбежны. При этом выборки могут быть самыми различными: у нас даже могут оказаться все конфеты одного сорта. Следовательно, в этой ситуации мы имеем дело с неупорядоченной (4,20)-выборкой с повторениями.

Рассмотрим ещё пару примеров. Пусть на кубиках написаны различные 7 букв: к, о, н, ф, е, т, а. Эти буквы образуют множество $U=\{к,о,н,ф,е,т,а\}$. Допустим, из данных кубиков мы хотим составить "слова" из 5 букв. Буквы этих слов (к примеру, «конфе», «тенко» и так далее) образуют (7,5)-выборки: $(к,о,н,ф,е)$, $(т,е,н,к,о)$ и т.д. Очевидно, что порядок следования букв в такой выборке важен. Например, слова «нокфт» и «кфтон» различны (хотя состоят из одних и тех же букв), ибо в них не совпадает порядок букв. Повторений букв в таких «словах» нет, ибо в наличии только семь кубиков. Итак, набор букв каждого слова представляет собой упорядоченную (7,5)-выборку без повторений.

Еще один пример: мы составляем всевозможные восьмизначные числа из четырёх цифр 1, 5, 7, 8. Например, 11111111, 15518877, 88881111 и так далее. Множество $U$ таково: $U=\{1,5,7,8\}$. Цифры каждого составленного числа образуют (4,8)-выборку. Порядок следования цифр в числе важен, т.е. выборка упорядоченная. Повторения допускаются, поэтому здесь мы имеем дело с упорядоченной (4,8)-выборкой с повторениями.

Размещения без повторений из $n$ элементов по $k$

Размещение без повторений из $n$ элементов по $k$ - упорядоченная $(n,k)$-выборка без повторений.

Так как элементы в рассматриваемой выборке повторяться не могут, то мы не можем отобрать в выборку больше элементов, чем есть в исходном множестве. Следовательно, для таких выборок верно неравенство: $n≥ k$. Количество размещений без повторений из $n$ элементов по $k$ определяется следующей формулой:

\begin{equation}A_{n}^{k}=\frac{n!}{(n-k)!} \end{equation}

Что обозначает знак "!"? : показать\скрыть

Запись "n!" (читается "эн факториал") обозначает произведение всех чисел от 1 до n, т.е.

$$ n!=1\cdot2\cdot 3\cdot \ldots\cdot n $$

По определению полагается, что $0!=1!=1$. Для примера найдём 5!:

$$ 5!=1\cdot 2\cdot 3\cdot 4\cdot 5=120. $$

Пример №1

Алфавит состоит из множества символов $E=\{+,*,0,1,f\}$. Определим количество таких трёхсимвольных слов в этом алфавите, которые не содержат повторяющихся букв.

Под трёхсимвольными словами будем понимать выражения вида "+*0" или "0f1". В множестве $E$ пять элементов, поэтому буквы трехсимвольных слов образуют (5,3)-выборки. Первый вопрос: эти выборки упорядочены или нет? Слова, которые отличаются лишь порядком букв, полагаются различными, поэтому порядок элементов в выборке важен. Значит, выборка является упорядоченной. Второй вопрос: допускаются повторения или нет? Ответ на этот вопрос даёт условие: слова не должны содержать повторяющихся букв. Подводим итоги: буквы каждого слова, удовлетворяющего условию задачи, образуют упорядоченную (5,3)-выборку без повторений. Иными словами, буквы каждого слова образуют размещение без повторений из 5 элементов по 3. Вот примеры таких размещений:

$$ (+,*,f), \; (*,+,f), \; (1,+,0) $$

Нас же интересует общее количество этих размещений. Согласно формуле (1) количество размещений без повторений из 5 элементов по 3 будет таким:

$$ A_{5}^{3}=\frac{5!}{(5-3)!}=\frac{5!}{2!}=60. $$

Т.е. можно составить 60 трёхсимвольных слов, буквы которых не будут повторяться.

Ответ : 60.

Размещения с повторениями из $n$ элементов по $k$

Размещение с повторениями из $n$ элементов по $k$ - упорядоченная $(n,k)$-выборка с повторениями.

Количество размещений с повторениями из $n$ элементов по $k$ определяется следующей формулой:

\begin{equation}\bar{A}_{n}^{k}=n^k \end{equation}

Пример №2

Сколько пятизначных чисел можно составить из множества цифр $\{5,7,2\}$?

Из данного набора цифр можно составить пятизначные числа 55555, 75222 и так далее. Цифры каждого такого числа образуют (3,5)-выборку: $(5,5,5,5,5)$, $(7,5,2,2,2)$. Зададимся вопросом: что это за выборки? Во-первых, цифры в числах могут повторяться, поэтому мы имеем дело с выборками с повторениями. Во-вторых, порядок расположения цифр в числе важен. Например, 27755 и 77255 - разные числа. Следовательно, мы имеем дело с упорядоченными (3,5)-выборками с повторениями. Общее количество таких выборок (т.е. общее количество искомых пятизначных чисел) найдём с помощью формулы (2):

$$ \bar{A}_{3}^{5}=3^5=243. $$

Следовательно, из заданных цифр можно составить 243 пятизначных числа.

Ответ : 243.

Перестановки без повторений из $n$ элементов

Перестановка без повторений из $n$ элементов - упорядоченная $(n,n)$-выборка без повторений.

По сути, перестановка без повторений есть частный случай размещения без повторений, когда объём выборки равен мощности исходного множества. Количество перестановок без повторений из $n$ элементов определяется следующей формулой:

\begin{equation}P_{n}=n! \end{equation}

Эту формулу, кстати, легко получить, если учесть, что $P_n=A_{n}^{n}$. Тогда получим:

$$ P_n=A_{n}^{n}=\frac{n!}{(n-n)!}=\frac{n!}{0!}=\frac{n!}{1}=n! $$

Пример №3

В морозилке лежат пять порций мороженого от различных фирм. Сколькими способами можно выбрать порядок их съедения?

Пусть первому мороженому соответствует цифра 1, второму - цифра 2 и так далее. Мы получим множество $U=\{1,2,3,4,5\}$, которое будет представлять содержимое морозилки. Порядок съедения может быть таким: $(2,1,3,5,4)$ или таким: $(5,4,3,1,2)$. Каждый подобный набор есть (5,5)-выборка. Она будет упорядоченной и без повторений. Иными словами, каждая такая выборка есть перестановка из 5 элементов исходного множества. Согласно формуле (3) общее количество этих перестановок таково:

$$ P_5=5!=120. $$

Следовательно, существует 120 порядков выбора очередности съедения.

Ответ : 120.

Перестановки с повторениями

Перестановка с повторениями – упорядоченная $(n,k)$-выборка с повторениями, в которой элемент $a_1$ повторяется $k_1$ раз, $a_2$ повторяется $k_2$ раза так далее, до последнего элемента $a_r$, который повторяется $k_r$ раз. При этом $k_1+k_2+\ldots+k_r=k$.

Общее количество перестановок с повторениями определяется формулой:

\begin{equation}P_{k}(k_1,k_2,\ldots,k_r)=\frac{k!}{k_1!\cdot k_2!\cdot \ldots \cdot k_r!} \end{equation}

Пример №4

Слова составляются на основе алфавита $U=\{a,b,d\}$. Сколько различных слов из семи символов может быть составлено, если в этих словах буква "a" должна повторяться 2 раза; буква "b" - 1 раз, а буква "d" - 4 раза?

Вот примеры искомых слов: "aabdddd", "daddabd" и так далее. Буквы каждого слова образуют (3,7)-выборку с повторениями: $(a,a,b,d,d,d,d)$, $(d,a,d,d,a,b,d)$ и т.д. Каждая такая выборка состоит из двух элементов "a", одного элемента "b" и четырёх элементов "d". Иными словами, $k_1=2$, $k_2=1$, $k_3=4$. Общее количество повторений всех символов, естественно, равно объёму выборки, т.е. $k=k_1+k_2+k_3=7$. Подставляя эти данные в формулу (4), будем иметь:

$$ P_7(2,1,4)=\frac{7!}{2!\cdot 1!\cdot 4!}=105. $$

Следовательно, общее количество искомых слов равно 105.

Ответ : 105.

Сочетания без повторений из $n$ элементов по $k$

Сочетание без повторений из $n$ элементов по $k$ – неупорядоченная $(n,k)$-выборка без повторений.

Общее количество сочетаний без повторений из $n$ элементов по $k$ определяется формулой:

\begin{equation}C_{n}^{k}=\frac{n!}{(n-k)!\cdot k!} \end{equation}

Пример №5

В корзине размещены карточки, на которых написаны целые числа от 1 до 10. Из корзины вынимают 4 карточки и суммируют числа, написанные на них. Сколько различных наборов карточек можно вытащить из корзины?

Итак, в данной задаче исходное множество таково: $U=\{1,2,3,4,5,6,7,8,9,10\}$. Из этого множества мы выбираем четыре элемента (т.е., четыре карточки из корзины). Номера вытащенных элементов образуют (10,4)-выборку. Повторения в этой выборке не допускаются, так как номера всех карточек различны. Вопрос вот в чём: порядок выбора карточек играет роль или нет? Т.е., к примеру, равны ли выборки $(1,2,7,10)$ и $(10,2,1,7)$ или не равны? Тут нужно обратиться к условию задачи. Карточки вынимаются для того, чтобы потом найти сумму элементов. А это значит, что порядок карточек не важен, так как от перемены мест слагаемых сумма не изменится. Например, выборке $(1,2,7,10)$ и выборке $(10,2,1,7)$ будет соответствовать одно и то же число $1+2+7+10=10+2+1+7=20$. Вывод: из условия задачи следует, что мы имеем дело с неупорядоченными выборками. Т.е. нам нужно найти общее количество неупорядоченных (10,4)-выборок без повторений. Иными словами, нам нужно найти количество сочетаний из 10 элементов по 4. Используем для этого формулу (5):

$$ C_{10}^{4}=\frac{10!}{(10-4)!\cdot 4!}=\frac{10!}{6!\cdot 4!}=210. $$

Следовательно, общее количество искомых наборов равно 210.

Ответ : 210.

Сочетания с повторениями из $n$ элементов по $k$

Сочетание с повторениями из $n$ элементов по $k$ – неупорядоченная $(n,k)$-выборка с повторениями.

Общее количество сочетаний с повторениями из $n$ элементов по $k$ определяется формулой:

\begin{equation}\bar{C}_{n}^{k}=\frac{(n+k-1)!}{(n-1)!\cdot k!} \end{equation}

Пример №6

Представьте себе, что мы находимся на конфетном заводе, - прямо возле конвейера, по которому движутся конфеты четырёх сортов. Мы запускаем руки в этот поток и вытаскиваем двадцать штук. Сколько всего различных "конфетных комбинаций" может оказаться в горсти?

Если принять, что первому сорту соответствует число 1, второму сорту - число 2 и так далее, то исходное множество в нашей задаче таково: $U=\{1,2,3,4\}$. Из этого множества мы выбираем 20 элементов (т.е., те самые 20 конфет с конвейера). Пригоршня конфет образует (4,20)-выборку. Естественно, повторения сортов будут. Вопрос в том, играет роль порядок расположения элементов в выборке или нет? Из условия задачи следует, что порядок расположения элементов роли не играет. Нам нет разницы, будут ли в горсти располагаться сначала 15 леденцов, а потом 4 шоколадных конфеты, или сначала 4 шоколадных конфеты, а уж потом 15 леденцов. Итак, мы имеем дело с неупорядоченной (4,20) выборкой с повторениями. Чтобы найти общее количество этих выборок используем формулу (6):

$$ \bar{C}_{4}^{20}=\frac{(4+20-1)!}{(4-1)!\cdot 20!}=\frac{23!}{3!\cdot 20!}=1771. $$

Следовательно, общее количество искомых комбинаций равно 1771.