Насосы и насосное оборудование

Нутромер для измерения диаметра цилиндра. Если изделие недоступно

Как замерить диаметр трубы, интересуются многие домашние мастера. Ведь при устранении неполадок в водоподающей или сливной сети часто приходиться менять трубы на новые, или ремонтировать старые.

Это требуется не только для перечисленных систем, но и при обустройстве газовой системы или дымохода. Профессиональные мастера хорошо знают, как подобрать размеры сортамента для водопровода, или любой другой системы.

Ремонтируя водопровод или канализацию, необходимо точно определить диаметр магистрали.

Метрические и дюймовые единицы измерения

Перед тем, как померить величину сортамента, следует принять во внимание, что технологические особенности прокладки и проведения расчетов при работе со стальными и пластиковыми магистралями различные.

По этой причине необходимо вначале получить понятие о типоразмерах трубопрокатных материалов для трубопроводов, и уже затем замерять их. Без этих знаний .

Стальной трубопрокат, прежде всего, определяют по внутреннему показателю объема измеряемого в дюймах. В соответствии с этими единицами можно встретить названия «дюймовые» и «полудюймовые” трубопрокатные материалы. Один дюйм равняется 25,4 мм, а его половина соответственно определяется как 12,7 мм.

Замерять наружный диаметр сантехники не спешат. Часто монтаж можно произвести и без него. Замерить эту величину нужно в тех случаях, когда надо померить магистраль, скрепляемую стыками на резьбовом соединении.

Обычно она нарезается на внешней части трубного изделия, и ее величина зависима от размеров стенки трубного изделия. При этих действиях следует запомнить, что если померить трубы с разными внутренними показателями объема, то размер стенки будет различным.

Чтобы проще измерить и подсчитать количество нужных материалов для трубопровода, можно применить специальную систему резьбы для показателя внешнего объема трубопрокатных изделий. От привычного показателя, который можно замерить в мм эти величины отличаются.

Чтобы правильно определить величину трубных изделий в миллиметрах или узнать их габариты в дюймах, нужно принять во внимание следующую информацию.

Например, если диметр метрической резьбовой накатки, обозначенный М16, то трубное изделие имеет наружный объем в 16 мм. В варианте с трубной резьбой все это отличается. В дюймах эти расчеты немножко другие.

Диаметр снаружи у полудюймового изделия не достигает 21 миллиметра, и ее резьбовая накатка такая же по габаритам. А название «полудюймовая», это изделие имеет из-за показателя объема внутри. В дюймах эта величина обозначается – ½. Чтобы легче было переводить дюймы в мм, рекомендуют пользоваться специальными таблицами.

Способы как можно измерить наружный и внутренний объем

До того, как приступать к работе, и выяснить, как меряется диаметр, придется установить, какой именно объем нужен для конкретной задачи. Весь трубопрокат для любых магистралей меряется и классифицируется по величине внутреннего диам-ра. Он носит название «условный проход», потому, что именно он отвечает за пропускные возможности сети.

Если меряется диаметр внутри, то он обозначается Dу, а внешний – Dн. Толщину стенки при этом указывают как h. С этими обозначениями удобно мерить и выполнять расчеты, и составлять проекты различных магистралей для жилых и производственных зданий.

Что касается способов замера размера объема трубных изделий, то первое, что важно отметить – это отличие их особенностей зависимо от условий. Их необходимо учитывать, иначе можно сделать много ошибок.

Определять выбор того, или иного варианта, приходиться зависимо от того, насколько в доступном месте расположили объект, который меряется. Теперь о некоторых из способов более детально.

Какой инструмент понадобиться для каждого способа

Перед тем, как подобрать диаметр трубы для отопления, или любой другой системы, необходимо знать, чем пользуются в таких ситуациях.

Общеизвестный штангенциркуль для измерения применяется чаще, чем другие инструменты. Но, его может не оказаться среди набора домашнего инструмента. Поэтому приходиться решать вопрос, как замерить диаметр трубы без штангенциркуля.

Также узнавать точные габариты изделия с большим диаметром на отоплении или водоснабжении, используя данное приспособление, не представляется возможным. В таких ситуациях замерить требуемую длину объема трубного изделия возможно более простыми приспособлениями:

  • гибкой линейкой;
  • рулеткой;
  • знания величины числа Пи, которая составляет 3,14.

Если доступ к сети не затруднен, лучше вариантом, как высчитать величину, будет рулетка или металлическая линейка. Но, твердой линейкой легко высчитать величину только торцевых частей магистрали, которая измеряется.

Смотреть видео

Еще одним вариантом, как меряется окружность трубы внутри или снаружи, это способ копирования. В такой ситуации к трубе подносят например линейку. Затем этот участок магистрали фотографируют. Мерить далее, чтобы получить весь набор необходимых сведений, следует по фотографии. Соответствующие реальности цифры получаются после проведенного масштабирования сделанных фото.

Помимо этого, найти диаметр можно при помощи следующей формулы:

В ней D показывает диаметр, а L – это окружность трубного изделия. На простом примере это выглядит следующим образом. Окружность трубы получилась 62,8 см. Это число делится на 3, 14. В результате получаем 200 мм.

С этой формулой работают не только домашние сантехники. Ее применяют и в условиях производства, только в данном случае есть небольшая поправка. Формула для работы остается в том же виде, только от конечного результата отнимают удвоенный показатель толщины рулетки и величину 0,2. В это число входит поправка на прилегание рулетки к поверхности магистрали.

Как замерить посредством линейки или рулетки

Перед тем, как замерить диаметр трубы рулеткой или гибкой линейкой, следует знать, что этот вариант отличается простотою действий, и эта задача будет посильной даже малоопытным мастерам. Тут необходимо выполнить всего один замер.

Необходимо измерить окружность трубопровода. Значение, которое получится, делят на величину Пи. Чтобы замерить и получить более точные цифры, следует использовать в работе не 3,14, а 3,1416. Но, для задачи как найти наружный диаметр трубы с большим объемом, линейки будет не достаточно. В работу нужно будет взять рулетку.

Чтобы определить объем трубы так же используют способ измерения габарита стенки на срезе. Это можно измерить все теми же инструментами. Есть возможность также применить штангенциркуль. От размерного показателя объема снаружи отнимается показатель толщины стенок.

Выполняя монтаж магистралей, важно знать, что определить внутренний объем сортамента, импортируемого к нам, нужно определяясь на то, что его поставляют с сопроводительной документацией.

Смотреть видео

В ней указываются значения внутреннего объема в дюймах. Чтобы перевести показатели внутреннего или внешнего размера в сантиметры, их нужно умножить на 2,54. Для аналогичного перевода внутреннего и внешнего диам-ра обратно, следует умножить показатель на 0,398.

Ниже представлен еще интересный способ.

Как замерить с помощью штангенциркуля

Если спросить у профессионального сантехника, как замерить штангенциркулем, то ответ на этот вопрос будет следующим – «штангенциркуль для таких действий является наиболее удобным приспособлением, и замерить им нужный габарит можно очень легко не проводя дополнительных вычислений. Но, измерять таким путем только можно трубный прокат с габаритами до пятнадцати сантиметров».

Губками приспособления нужно основательно прижиматься к стенке сортамента, но прикладывать при этом большие усилия не рекомендуют. Дальше можно замерить и определить размеры в сантиметрах, и при наличии необходимости – в миллиметрах.

Так же, используя штангенциркуль, можно мерить и определить размер торцевой части. Если эта часть магистрали находится в труднодоступном месте, и соединение здесь неразъемное, то это приспособление окажется даже очень кстати.

Но, длина его ножек не должна быть больше, чем половина объема трубопровода. Для определения замера измерительное приспособление прикладывается к трубе в самом широком месте.

Смотреть видео

Перед тем, как определить диаметр стальной трубы этим способом, следует запомнить, что мастера со стажем рекомендуют брать для работы только прибор высокого качества. Только он может гарантировать точное определение размеров.

Как замерить микрометром

Если определяется диаметр металлической или любой другой трубы, то каждый замер можно проделать с высокой точностью (до 0,01мм) с помощью микрометра. По своему виду, устройство напоминает скобу. На одной ее стороне находится пятка – опора, а на другой стебель и резьба высокой точности, оснащенная микровинтом. Микровинт содержит метрическую шкалу.

Чтобы узнать, как найти показатель объема сортамента посредством микрометра на металлическом или другом трубопрокате, необходимо расположить деталь между пяткой и торцом, затем начать вращение винта.

Продолжать следует до тех пор, пока не прозвучат 3 щелчка. Далее нужно найти показания на стебле, где есть шкала в миллиметрах, и к полученным цифрам добавляются данные со второй шкалы прибора (это сотые доли миллиметра). В сумме этих двоих показателей определяется нужная величина. И, как видно, найти ее совсем не сложно.

Наиболее правильно замерить диаметр трубы позволяют микрометры, оснащенные электронной функцией цифрового отсчета. Они самые удобные для работы, и позволяют определить результат с точностью до 0, 001мм. Если в таком приборе садится батарейка, то замерить им можно, как обычным микрометром.

Единственным минусом в данном случае называют высокую стоимость приборов, что не всегда приемлемо для домашнего мастера. Поэтому, чтобы правильно произвести замер в домашних условиях, такие приборы применяют крайне редко.

Лазерные датчики

Измеряться диаметр металлической или любой другой трубы круглого сечения может сканирующими лазерными датчиками. Как определяется диаметр трубы этими приборами? Здесь все просто.

Такие устройства состоят из получателя и приемника. Эти приборы используют плоскость света, образовавшуюся от лазера, который отклоняется крутящейся призмой и направляется посредством линзы.

В приемнике лазер фокусируют на диоде. Для того чтобы выполнить последующий проход лазеру по металлической или другой системе, необходимо время.

Как замерить давление воды в трубопроводе

Измеряться давление жидкости в магистрали может посредством простого прибора – манометра. Здесь все предельно просто, достаточно взглянуть на шкалу прибора. Показатели этого прибора принимают с незначительным допущением.

Но, есть другие способы, как определить объем воды в трубе. Это делают при помощи самодельных приспособлений и формул расчета, основанных на правилах гидродинамики. При расчетно – экспериментальных способах можно определить давление, используя шланг, а далее проводят вычисления через показатель расхода жидкости.

Определить окружность трубы по расходу воды, и найти в сети для этого формулы не трудно. Но, измеряться показательная величина в результате таких экспериментов будет со значительными погрешностями. Определить и использовать замер диаметра по расходу жидкости более целесообразно будет в качестве справочной информации.

Вычислить площадь трубы, зная диаметр, можно посредством все тех же формул. В них подставляются найденные и известные величины, и путем простого расчета можно вычислить площадь магистрали на нужном участке.

Сама формула выглядит следующим образом:

В ней: S это площадь сечения внутри заготовки; Рi равняется 3,14; D обозначает внешний объем трудного изделия, а N – толщина стенки.

Вычислить площадь и другие габариты необходимо точно, иначе построенное сооружение будет плохого качества и с низкой надежностью. А зная точно площадь сооружения можно не только выстроить высоконадежный трубопровод, но и сэкономить на закупке лишних строительных материалов.

Весь изложенный материал помогает решить такой нужный вопрос, как вычислить диаметр трубы. Из материала становится понятно, что сделать это совершенно не трудно. Вычислить все нужные величины можно, имея несложные знания школьного уровня.

Так же, вычислить все требуемые параметры можно, если внимательно применять простые инструменты, которые существенно упростят все действия. Любой домашний мастер без труда сможет замерить и вычислить все нужные показатели, и сконструировать качественный трубопровод.

Если возникают трудности, как правильно подобрать диаметр трубы или как вычислить его по длине окружности, то всегда можно обратиться за помощью к специалистам. Они быстро подберут и вычислят нужные диаметры по длине окружности трубопроката.

Смотреть видео

Помимо вычисления и подбора профессиональные мастера могут помочь с монтажными работами. Только для работы следует подобрать грамотных специалистов. Тогда, потраченные на их работу деньги, полностью оправдают себя надежным функционированием построенной системы.

Нутромер является измерительным инструментом, который предназначается для получения данных о расстоянии между двумя поверхностями, а также определения внутреннего диаметра различных деталей. В среднем, точность измерения этим прибором составляет 0,01 мм. Нутромер для измерения диаметра цилиндра состоит из сменных калиберных стержней, которые являются удлинителями и головки. Сама головка состоит из следующих частей:

  • Сменный наконечник;
  • Стопорное устройство;
  • Стебель;
  • Колпачок;
  • Барабан;
  • Микрометрический винт

Благодаря наличию сменных наконечников можно увеличить предел измерений. Для тех приборов, у которых точность измерения составляет 0,01 мм, актуальным ГОСТом является 868-82, а для устройств с ценой деления 0,001 или 0,002 мм – 9244-75.

Преимущества нутромеров состоят в достаточно высокой точности измерения, как для частной, так и для производственной сфере. Стоимость прибора также не высока. Главное, что здесь сохраняются преимущества всех механических устройств, куда относится долговечность работы. В то же время за ними требуется специальный уход и особые условия хранения. При поломке зачастую ремонт очень сложен и выходит легче заменить прибор на новый, чем отремонтировать. При некоторых измерениях на мягких частях могут оставаться деформации, если было сильное нажатие. Если речь идет об измерении цилиндров, то возникают сложности в местах, где имеются окна.

Какими видами нутромеров можно измерить диаметр цилиндра?

Нутромеры зачастую используется для измерения диаметра цилиндра. Для этой операции не подходят микрометры, так что специалисты используют эти разновидности устройств. Измерение цилиндров нутромером производится в двух перпендикулярных плоскостях и четырех поясах. Для этого подходят самые популярные разновидности нутромеров.

Индикаторный тип устройства подходит больше для тех цилиндров, диаметр которых является относительно небольшим. Они могут работать с размерами от 6 мм и больше. Он легко в использовании, но использует относительный метод измерения, так что у прибора имеются две шкалы. Несмотря на то, что он может работать с маленькими величинами, погрешность у него является более высокой, чем у другого типа этих устройств.

фото:нутромер индикаторный для измерения диаметра цилиндра

Микрометрический нутромер использует абсолютный способ измерения, что при той же цене деления, что и у индикаторного типа дает значительно меньшую погрешность. Предел измерений здесь лежит в диапазоне от 50 до 4000 мм, что зависит от конкретной модели. Люди нередко используют два прибора, чтобы получить более точные данные.

Подбор нутромера для измерения диаметра цилиндра

Чтобы измерить цилиндр нутромером, требуется правильно подобрать само устройство. От этого будет напрямую зависеть точность результата, а также удобство использования. В первую очередь следует определиться с подходящими размерами, так как у микрометрического и индикаторного типа слишком большой разброс по минимальному пределу. Если нужно работать с деталями диаметром до 5 см, то подойдет индикаторный нутромер, если более – микрометрический.

Далее уже нужно определяться с тем, какие сменные калиберные стержни должны идти в наборе. Они расширяют и сужают рабочий диапазон прибора, так что для получения правильных данных нужно иметь широкий запас сменных частей. Чем выше класс точности, тем меньше погрешность, так что современные высокоточные устройства позволяют получить максимально точные данные для дальнейшей работы.

Естественно, что прибор должен пройти поверку, не иметь повреждений и соответствовать принятым ГОСТам. Если есть возможность, то специалисты проводят измерение несколькими приборами одновременно.

Как пользоваться нутромером – принцип проведения измерения диаметра цилиндра

Перед тем как использовать нутромер для цилиндров, необходимо убедиться, что все его стрелки находятся в нулевой позиции. Если этого нет, то их можно отрегулировать при помощи специальных винтов, отвечающих за положение стрелок. Сложность измерения цилиндра заключается в том, что не всегда можно зафиксировать прибор, чтобы он ровно стоял и точно соответствовал требуемой горизонтали.

фото:измерения диаметра цилиндра нутромером

Деталь измеряется минимум в четырех различных местах, желательно, с одинаковой удаленностью друг от друга. Это помогает определить конусность изделия и внутренние деформации. Еще одной сложностью является невозможность измерения диаметра в тех местах, где находятся окна цилиндра. Когда инструмент доходит до них, то он попросту проваливается внутрь. В четырехтактных моторах, где в цилиндрах нет окон, таких проблем не возникает и нутромер может выполнить все необходимые функции. В ином же случае может потребоваться применение дополнительных измерительных приборов. Также можно измерять размеры в непосредственной близости от окон.

Светодиодная продукция с доставкой по Украине по самым низким ценам представлена на http://www.led-world.com.ua/ . Обращайтесь!

Нутромер для измерения диаметра цилиндра:Видео

Инструменты, применяемые при центровке валов электрических машин

Простейшие линейные измерения при центровке валов электрических машин производят при помощи стальных линеек с делениями и складных метров. Точные измерения длин, диаметров и зазоров выполняют многомерным, точным измерительным инструментом: штангенциркулями, микрометрами, скобами с отсчетным устройством, микрометрическими нутромерами и пластинчатыми щупами.

Штангенциркуль

Штангенциркулями (рисунок 1) измеряют наружные и внутренние диаметры, а также длину деталей размером до 4000 мм. Кроме этого отдельными типами штангенциркулей могут измеряться глубины, удаленности наружных и внутренних уступов, а также выполняться разметочные работы. Штангенциркули различаются по типам, моделям, диапазонам измерений и уровням точности измерений. Точность измерений может быть от ± 0,01 до 0,1 мм.

Различают механические и электронные или цифровые штангенциркули. Механические штангенциркули имеют два вида отсчетных устройств - рамку с нониусом или стрелочный индикатор. Цифровой штангенциркуль вместо рамки имеет цифровое отсчетное устройство, в котором измеренные значения выводятся в виде цифр на жидкокристаллический дисплей.

Самый простейший штангенциркуль, позволяющий измерять диаметры и длины, состоит из штанги 1 ,с нанесенной на ней измерительной шкалой, на которой закреплены измерительные губки 2 . По штанге, перемещается подвижная рамка 3 с нониусом 5 . Затяжка рамки на штанге осуществляется с помощью зажима 4 . В штангенциркуле предусмотрена микрометрическая подача 6 рамки.

Рисунок 1. Устройство штангенциркуля

Как измерять штангенциркулем? Перед началом измерений (например, диаметра конца вала) необходимо ослабит винт, освободить штангу и передвигать наружную измерительную губку до тех пор, пока обе губки слегка зажмут вал. Затем с помощью винта микрометрической подачи подводят рамку с нониусом и закрепляют последнюю зажимом. Отсчет целых миллиметров производят по делениям на штанге, а долей миллиметра по нониусу.

Для знакомства с конструкциями других типов штангенциркулей и более подробного изучения методов производства измерений штангенциркулями, посмотрите видео 1.

Видео 1. Измерение штангенциркулем

Микрометр

Микрометры (рисунок 2) применяют для измерения наружных диаметров (например, диаметр конца вала) и длины деталей размером до 2000 мм. Точность измерений может быть от ± 0,001 до 0,01 мм.

Рисунок 2. Устройство микрометра

Отсчеты целых и половин миллиметров производят на делениях стебля 7 , а долей миллиметра - на нониусе, нанесенном на барабане 5 .

Перед началом работы с микрометром следует отвинтить стопорный винт 3 и стопорную шайбу 8 на скобе 1 и передвигать пятку 2 до тех пор, пока не совпадут нулевые деления барабана и стебля (при соприкосновении измерительных поверхностей пятки и микрометрического винта 4 ). После этого стопорный винт вновь завинчивают и закрепляют пятку.

Для измерения деталь необходимо слегка зажать мерительными поверхностями микрометра. Для этого вращают микрометрический винт при помощи трещотки 6 до проскальзывания последней.

На видео 2 вы можете наглядно ознакомиться с тем, как нужно пользоваться микрометром.

Видео 2. Измерение микрометром

Скобы с отсчетным устройством (рисунок 3) предназначены для измерения наружных диаметров и длины деталей размером до 1000 мм.

Рисунок 3. Устройство скобы с отсчетным устройством

Скоба состоит из плоского полукруглого корпуса 3 , в котором закреплены подвижная 1 и переставная 5 пятки, а также прикрепленное к подвижной пятке индикаторное отсчетное устройство 2 с делениями. Скоба снабжена теплоизоляционными накладками 4 , предотвращающими влияние тепла рук замерщика на точность результатов измерений.

Точность измерений скобами составляет от ± 0,002 до 0,01 мм.

Микрометрические нутромеры (рисунок 4) применяют для измерения внутренних диаметров (например, диаметр отверстия ступицы полумуфты) или расстояния между поверхностями. Нутромеры выпускают с пределами измерений от 50 - 75 мм до 400 - 10000 мм.

Рисунок 4. Устройство микрометрического нутромера

Нутромеры с пределами измерений 1250 - 4000 мм и более имеют две головки: микрометрическую и микрометрическую с индикатором.

Микрометрический нутромер состоит из трубки 2 , соединенной с удлинителями 3 и прикрепленным к последним измерительным наконечником 4 . Внутри второго конца трубки закреплен стебель (на рисунке 4 не виден) микрометрической головки 1 , на котором плавно вращается барабан последней. Измерительные поверхности микрометрической головки и измерительного наконечника нутромера выполнены из твердого сплава. На стебле и барабане микрометрической головки нанесены деления.

После установки нутромера в рабочее положение и соприкосновения измерительных поверхностей его микрометрической головки и измерительного наконечника с поверхностями отверстия ступицы полумуфты необходимо совместить нулевой штрих на барабане микрометрической головки с продольным штрихом на ее стебле. При измерении диаметра отверстия в ступице полумуфты нутромер необходимо установит под прямым углом к оси отверстия, так как даже при незначительном его наклоне измерения будут неверны.

Пластинчатые щупы (рисунок 5) применяют для измерения зазоров между плоскостями полумуфт центрируемых валов, а также между конусом стержня индикатора (или штифта центровочной скобы) и ободом полумуфты. Такой щуп 1 состоит из калиброванных пластин 2 толщиной от 0,02 до 1 мм. Длина пластин в щупах может быть 100 или 200 мм. Щупы с пластинами длиной 100 мм поставляют только четырьмя наборами от 9 до 17 пластин в каждом наборе. Щупы с пластинами длиной 200 мм поставляют в виде отдельных пластин.

Рисунок 5. Устройство пластинчатого щупа

Пластины щупа должны входить в зазор на глубину не более 20 мм не свободно, а с некоторым трением, которое должно быть примерно одинаковым при всех измерениях.

Приборы, применяемые при центровке валов электрических машин

Кроме перечисленных инструментов, при центровке валов электрических машин применяют индикаторы, уровни, виброметры, вибрографы, а также ряд приспособлений.

Индикатор

Индикаторы используют для измерения биения центрируемых валов, биения соединительных полумуфт, а также для проверки правильности формы названных выше деталей электрических машин. Индикатор (рисунок 6) представляет собой несложный прибор, состоящий из собственно индикатора 1 с измерительным стержнем 2 , укрепленного при помощи держателя 3 на стойке 4 , которая установлена на штатив 5 .

Рисунок 6. Устройство индикатора

Для производства измерения (например, биения вала) индикатор устанавливают на неподвижной опоре, которая не испытывает вибрации, а измерительный стержень - перпендикулярно оси вала и слегка нажимают на проверяемую поверхность. Конструкция индикатора основана на применении зубчатого зацепления, преобразующего поступательное движение измерительного стержня во вращательное движение стрелки индикатора. Индикаторы изготавливают с пределами измерений 0 - 2; 0 - 3; 0 - 5 и 0 - 10 мм и точностью отсчета основной шкалы индикатора 0,01 мм.

Уровень

Уровни применяют при выверке лини валов соединяемых машин, а также для проверки горизонтальности фундаментных плит в процессе установки электрических машин и приводимых ими в действие механизмов. Для указанных целей используют уровни: рамный, с микрометрическим винтом типа "Геологоразведка" и гидростатический.

Рамные уровни выпускаются со сторонами размерами 200 × 200 мм и 300 × 300 мм и с ценой деления от 0,02 до 0,3 мм. Под ценой деления понимается угол наклона ампулы или величина подъема в миллиметрах на 1 м, соответствующие перемещению пузырька на одно деление.

Рабочие поверхности уровня - плоские; на нижней, верхней и одной из боковых поверхностей имеются призматические выемки.

Уровень типа "Геологоразведка" с микрометрическим винтом показан на рисунке 7. Верхняя часть его представляет собой цилиндрическую стеклянную ампулу, заключённую в металлический цилиндр с вырезом. Цилиндр с одно стороны шарнирно соединен с корпусом уровня, с другой стороны его находится микрометрический винт с делительной головкой, поворот которой вызывает подъем или опускание конца цилиндра с ампулой. Цена деления 0,1/1000 мм, то есть одно деление соответствует подъему в 0,1 мм на 1 м.

Рисунок 7. Внешний вид уровня типа "Геологоразведка" с микрометрическим винтом

Для определения уклона какой либо поверхности пузырек в ампуле приводится в нулевое положение вращением микрометрического винта, после чего отсчетом на микрометрической головке определяют величину уклона. Для проверки правильности полученных показаний следует повернуть уровень на 180°.

Виброметры (рисунок 8) предназначены для измерения амплитуды вибрации электрических машин или отдельных их частей и ее направления. Под амплитудой вибрации следует понимать величину перемещения контролируемой поверхности машины (например, поверхности полумуфты) от одного крайнего положения через положение равновесия до другого крайнего положения. Виброметр состоит из рамы 1 , массивной призмы 2 , подвешенной к раме на пружинах 3 , встроенного в призму индикатора 4 , упирающегося своей пуговкой 5 в кольцо 6 , скрепленное с рамой, винтов 7 застопоривания призмы и ручки 8 для переноски виброметра. Индикатор свободно вращается вокруг своей оси, так что пуговка может занимать любое радиальное положение. Это дает возможность проверять не только амплитуду колебаний, но и ее направление. Для крепления прибора к вибрирующей поверхности в нижней части рамы имеется отверстие с резьбой. Применение массивной призмы вызвано ее свойством в силу инерции, будучи упруго подвешенной, оставаться при колебаниях корпуса прибора практически неподвижной; в этом случае перемещение корпуса относительно неподвижной массы измеряют индикатором.

Рисунок 8. Устройство виброметра

Вибрацию следует замерять в трех направлениях; вертикальном осевом (вдоль оси машины) и поперечном (в горизонтальной плоскости перпендикулярно оси машины).

При измерении вибраций от 0,05 до 6 мм у электрических машин с номинальной частотою вращения более 750 об/мин следует применять ручные вибрографы ВР-1.

Виброграф ВР-1 (рисунок 9) состоит из передающего рычажного механизма, устройства для передвижения ленты и отметчика времени.

На оси 1 (рисунок 9, а ) имеется штифт 2 , прикасающийся к вибрирующей поверхности. Ось при помощи шарнира 3 связана со стальным пером 4 , которое может поворачиваться вокруг оси рукоятки 5 . Пружина 6 , натяжение которой можно регулировать, предназначена для получения надлежащего контакта между штифтом и вибрирующей поверхностью. Кривая вибрации записывается острием пера, царапающего на бумажной ленте 7 , покрытой слоем воска. Лента передвигается с определенной скоростью при помощи часового механизма с пружинным заводом. Отметчик времени делает отметку на ленте каждую секунду, что дает возможность определить частоту вибраций.

Рисунок 9. Устройство вибрографа

Общий вид вибрографа приведен на рисунке 9, б . Ось 1 со штифтом помещается в направляющей трубке 8 . Для регулирования натяжения пружины используется винт 9 . Рычажок служит для включения и отключения движения ленты и отметчика времени. Пружину часового механизма заводят рукояткой 5 . За движением пера вибрографа наблюдают через лючок в корпусе. Прибор снабжен рычажным увеличителем записи колебаний, надеваемым на направляющую трубку и позволяющим увеличивать записи в 2 и 6 раз.

Приспособления, применяемые при центровке валов электрических машин

Для центровки валов применяют также специальные приспособления: центровочные скобы, приспособления для центровки с электромагнитным прижимом и индикаторами, приспособления для центровки машин с промежуточным валом, приспособления для шлифовки вала, для проворачивания валов, для подъема вала на небольшую высоту, упоры против осевого смещения вала, универсальные трех-захватные съемники полумуфт и другие. Ниже рассматривается конструкция отдельных типов центровочных скоб. Конструкция и принцип действия остальных приспособлений будут подробно рассмотрены в статьях "Подготовка к центровке валов" и "Центровка валов электрических машин".

Центровочные скобы изготовляют непосредственно перед монтажом или ремонтом электрических машин. В отдельных случаях это делают без предварительного расчета, что следует считать серьезным упущением, так как от правильного выбора конструкций скоб в большой степени зависит точность центровки.

В таблице 3 приведены основные размеры, по которым, зная длину скобы, можно подобрать сечение (высоту h и ширину b ).

Таблица 3

Основные размеры центровочных скоб

Высота сечения скобы h , мм Ширина сечения скобы b , мм Расчетная длина консольной части скобы, мм Высота сечения скобы h , мм Ширина сечения скобы b , мм
20
30
40
50
60
70
80
7
10
12
15
18
20
23
15
15
15
15
15
15
15
100
120
140
160
180
200
230
25
28
30
32
34
36
38
20
20
25
25
30
30
30

На рисунке 10 показаны отдельные конструкции центровочных скоб. Скоба, показанная на рисунке 10, а , применяется в случаях больших расстояний между полумуфтами. Ее площадь поперечного сечения должна обеспечивать достаточную жесткость для предотвращения смещения конца скобы в процессе центровки.

В том случае, когда на ободе полумуфты нет специального нарезанного отверстия для завертывания болта, крепящего скобу на полумуфте, применяется скоба, показанная на рисунке 10, б . Эта скоба крепится штифтом, устанавливаемым в отверстие для болта полумуфты.

Нашли также широкое применение скобы, закрепляемые на ободе полумуфты (рисунок 10, в ).

Рисунок 10. Конструкции центровочных скоб.
а - для больших расстояний между полумуфтами; б - закрепляемая штифтом, устанавливаемым в отверстии для болта полумуфты; в - закрепляемая на ободе полумуфты

В СССР для монтажа средних и крупных электрических машин применяли бригадные наборы специальных инструментов.

Каждый из таких наборов включает следующие инструменты, приспособления и приборы, в том числе и необходимые для центровки валов: микрометр типа МК, предел измерений 0 - 25 мм, точность измерений 0,01 мм (ГОСТ 6507-90); комплект микрометрических нутромеров, пределы измерений 50 - 600 мм (ГОСТ 10-88); комплект щупов типа I 1 - 100, 5 - 100 и типа II 7 - 200 (ГОСТ 882-75); комплект гаечных ключей размером 8 - 36 мм (ГОСТ 2906-80); комплект конических разверток Ø 13 - 27 (ГОСТ 10082-71); комплект индикаторных скоб типа С, 300 - 800; индикатор валовый типа I, точность измерений до 0,01 мм; уровень типа "Геологоразведка" с микрометрическим винтом, с ценой деления 0,1 / 1000 мм; уровень рамный нерегулируемый; уровень гидростатический; щуп клиновый; ключ со сменными головками для больших гаек; набор инструментов слесаря монтажника; электрошарошка, бучарда пневматическая, приспособление для развертывания отверстий в полумуфтах; приспособление для проворачивания валов; приспособление для центровки валов с электромагнитным прижимом и индикаторами; приспособление для центровки машин с промежуточным валом; съемник подшипников качения (со скобой и хомутом); съемник трех-захватный универсальный; домкрат клиновый грузоподъемностью 50 тс; домкрат гидравлический грузоподъемностью 100 тс; виброметр с ценой деления 0,01 мм; тахометр центробежный ручной типа ИО-10; комплект отвесов; комплект стропов; призма длиной 100 - 150 мм (ГОСТ 5641-88).

Помимо этого для центровки валов электрических машин используют такелажные механизмы: лебедки тали и блоки, а также такелажную оснастку: канаты стальные и пеньковые, коуши и зажимы.

Материалы, применяемые при центровке валов электрических машин

В процессе центровки валов электрических машин расходуется также ряд материалов. К последним относятся: керосин и бензин - для очистки шеек и концов валов и посадочной части полумуфт от консервирующей антикоррозийной смазки; кроме того, керосин используют для разведения пасты ГОИ; бязь и марля чистые - для протирки указанных частей машин; цветной мел или цветные карандаши - для пометок на полумуфтах; тетради - для записи результатов замеров; мешковина в качестве защитного покрытия; тряпки чистые; концы обтирочные; нитки суровые, шпагат крученый; фетр и войлок - для шлифовки шеек вала; прессшпан, кожа, мел, паста ГОИ - для полировки шеек вала; уайт-спирит, ксилол - для снятия антикоррозийного покрытия на шейках валов; этиловый спирт - для протирки шеек вала.

Практическая работа № 5.

Измерение и контроль наружных диаметров (2 часа)

Цели:

Изучить средства и методы измерения наружных диаметров при обработке наружных цилиндрических поверхностей на токарно-карусельном станке.

Оборудование: токарно-карусельный станок, деталь, кулачки, пусто­телые призматические подкладки, резцы, штангенциркуль.

Задание.

1. Изучите методы измерения и контроля наружных диаметровпри обработке наружных цилиндрических поверхностей на токарно-карусельном станке.

2. Изучите приемы измерении при черновом обтачивании.

3. Изучите приемы измерений при чистовой обработке.

4. Изучите приемы косвенных измерений больших размеров.

5. Изучите приемы измерений при пользовании накладными приборами.

Отчет о выполнении практической работы.

1. Запишите чем производятся измерения при черновом обтачивании и какова точность этих измерений.

2. Запишите какие инструменты применяют для измерений при чистовой обработке в условиях единичного и мелкосерийного производства, в условиях серийного и массового производства. В каких случаях применяют каждый инструмент?

3. Запишите как различают точение по характеру обработки и какие параметры шероховатости поверхности и точности обработки им соответствуют.

4. Запишите основные технологические приемы для повышения производительности и для более пол­ного использования полезной эффективной мощности станка.

5. Запишите что такое косвенные измерения, чем и как они выполняются.

6. Запишите основные виды брака при обработке наружных цилиндрических поверхностей и меры его предупреждения.

7. Выполните эскиз обрабатываемой детали.

8. Укажите тип заготовки (прокат, поковка, отливка), материал заготовки.

9. Запишите технологическую последовательность переходов при обработке наружной цилиндрической поверхности, применяемый инструмент, режимы резания (глубина резания на проход, частота вращения планшайбы n , подача S, скорость резания, основное время T о на операцию).

Контрольные вопросы

1. Какие средства и методы измерения применяют при черновой и при чи­стовой обработке?

2. Перечислите правила пользования штангенциркулем.

3. Как производить измерение наруж­ных цилиндрических поверхностей микрометрами и индикаторными ско­бами?

4. В каких случаях применяют пре­дельные калибры-скобы?

5. Назовите методы и средства кос­венного измерения больших диа­метров.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ


СРЕДСТВА И МЕТОДЫ ИЗМЕРЕНИЯ НАРУЖНЫХ ДИАМЕТРОВ

Выбор средств и методов измерения наружных цилиндрических поверхностей производится в зависимости от их размера и требуемой точности измерения.

Измерения при черновом обтачивании

Грубые измерения диаметров при черновом обтачивании наружных поверхностей диаметром до 500 м: м производят с помощью кронциркулей и линеек. Кронциркуль устанавливается на измеряемый размер легкими уда­рами наружной или внутренней стороны одной из его ножек об обрабатываемую деталь или другой предмет. При измерении кронциркуль необходимо держать строго перпендикулярно к оси измеряемой детали. После снятия размера с детали кронциркуль осто­рожно прикладывают к измерительной линейке так, чтобы одна его губка упиралась в торец линейки, а другая – накладывается на линейку и по концу этой губки отсчитывают по делениям линейки размер диаметра. При измерении диаметра линейкой ее необходимо располагать так, чтобы ее кромка проходила через центр детали. Точность измерения кронциркулем и линейкой составляет 0,2-0,5 мм (14-16-й квалитеты точности).

Измерения при чистовой обработке

Измерение точных цилин­дрических поверхностей в условиях единичного и мелкосерийного производства выполняют с помощью штангенциркулей, микрометров и индикаторных скоб, а в условиях серийного и массового производства – с помощью предельных калибров-скоб.

Штангенциркули применяются для измерения наружных диаметров и длин по методу непосредственной оценки размера по шкале и нониусу. Штангенциркули типа ШЦ-III с диапазо­нами измерения (мм):

250-630; 320-1000; 500-1600; 800-2000; 1500-3000; 2000-4000

Отсчет по нониусу 0,1 мм. Рекомендуется производить измерение диаметра в двух взаимно перпендикулярных направлениях I – I и II – II (рис. 8.16). При измерении неподвижную губку устанавли­вают на цилиндрическую поверхность и при небольшом покачивании штангенциркуля в горизонтальной плоскости микрометрическим вин­том подают подвижную губку до легкого касания с измеряемой по­верхностью. В этом положении закрепляют подвижную губку и производят отсчет полученного размера диаметра по нониусу. При измерениях необходимо сле­дить за правильным положением штангенциркуля, чтобы измерительные поверхности губок точно соприкасались с наружной цилин­дрической поверхностью по ее образующим. Предельные погрешности измерения (мкм) штангенциркулями для интервалов размеров (мм):

Св. 500 до 1000 – 210

» 1000 » 1600 – 270

» 1600 » 2000 – 270

» 2000 » 2500 – 300

» 2500 » 3150 – 380

» 3150 » 4000 – 470

Дуговые микрометры и индикаторные скобы применяют для измерения диаметров до 3000 мм, а линейные микрометры – для наружных диаметров с торца детали и длин. Микрометры могут быть оснащены микрометрической головкой и сменной пяткой (рис. 8.17, а) или микрометрической головкой и индикатором. Индикаторные ли­нейные скобы (рис. 8.17, б) применяются для измерения диаметра с торца детали и длин размерами до 6 м.

Перед каждым измерением микрометры с переставной пяткой и индикаторные микрометры и скобы должны быть установлены на размер измеряемой детали – номинальный (один из предельных или средний). При настройке на размер микрометрическую головку и индикатор нужно установить на ноль, причем индикатор – после двух-трех оборотов стрелки. Установку производят по установоч­ной мере, аттестованному нутромеру или плоскопараллельным кон­цевым мерам длины, желательно около измеряемой детали. Предварительно микрометр или скобу и установленную меру необходимо выдержать рядом с деталью на чугунной плите, станине станка или на самой детали в течение некоторого времени. Температура в цехе должна быть в пределах 20 ± 8 °С. В процессе установки микрометр (скобу) и установочную меру надо поддерживать за теплоизолирующие накладки. Для того чтобы уменьшить влия­ние деформации скобы от собственной массы, в процессе установки микрометр (скобу) располагают в таком положении, как при изме­рении ими изделий. Скобу следует надвигать или опускать на меру в зависимости от того, будет ли она находиться при измерении детали в горизонтальном или вертикальном положении. В процессе установки участвуют два контролера: один из них прижимает пятку скобы к поверхности установочной меры, а другой покачивает скобу в двух направлениях за второй ее конец, находит на шкале индикатора точку возврата и совмещает с ней нулевую отметку шкалы. При проверке нулевой установки микрометра с перестав­ной пяткой без индикатора правильное положение микрометра от­носительно установочной меры определяют по ощущению.

При измерении микрометрами и скобами по шкале микрометри­ческой головки или индикатора определяют отклонения измеря­емой детали от размера, на который установлен микрометр или скоба (от размера установочной меры). Перед измерением деталь должна быть выдержана в помещении со стабильной температурой не менее 24 ч, измерения должны производиться сразу после уста­новки микрометра на размер. Измерение размеров до 1000 мм вы­полняется одним контролером, а размер более 1000 мм – двумя контролерами. Один из контролеров, прижимает пятку скобы к поверхности детали, а второй подводит к детали измерительную поверхность микрометрической головки, а затем слегка поворачивает скобу в диаметральной и осевой плоскостях и, регулируя ее размер поворотом барабанчика микрометрической головки, находит по ощущению, а при наличии индикатора – по его шкале наибольший размер в диаметральной и наименьший в осевой плоскостях.

При измерении точных размеров необходимо учитывать допол­нительные погрешности, такие, как погрешности установочной меры, отсчета по шкалам, погрешность от упругих деформаций и др., данные о которых приведены в специальной литературе. Например, погрешности установки скоб на размер приведены в табл. 8.11.

Таблица 8.11

Погрешности процесса установки скоб на размер

В условиях серийного и массового производства для измерения наружных диаметров применяют калибры-скобы, называемые пре­дельными, так как они не контролируют действительные размеры детали, а устанавливают, что дей­ствительный размер детали находится в пределах за­данного допуска на раз­мер. Предельные калибры-скобы состоят из двух частей: проходной (ПР) и непроходной (НЕ). Раз­меры проходной и непро­ходной частей должны со­ответствовать предельным размерам измеряемого диа­метра. Расстояние между измерительными поверхностями проходной стороны ПР (рис. 8.17, в) равно наибольшему предельному размеру диаметра, а размер между измерительными поверхностями непроходной стороны НЕ равен наи­меньшему диаметру детали. При контроле размеров проходные раз­меры должны свободно проходить через деталь под действием соб­ственной силы тяжести или установленной нагрузки. При этом необходимо исключить перекос и заклинивание калибров, правильно, совмещая измерительные губки с поверхностями контролируемого диаметра.

Перед началом контроля контролируемая деталь должна быть выдержана в помещении со стабильной температурой не менее 24 ч, а рабочие калибры рядом с деталью на металлической плите, ста­нине станка или на самой детали, пока не будет достигнуто выравнивание температур детали и калибров.

Время выдержки калибра перед контролем для контролируемого размера (мм): до 1000 1,52; до 2500 – 2,5; до 3500 – 4 ч.

При контроле калибры следует держать за теплоизолирующие накладки.

Косвенные измерения больших размеров

Под косвенными измерениями понимают измерения, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. Косвенные измерения применяют главным образом для измерения размеров от 2 до 30 м, и их точность, как правило, меньше, чем прямых измерений, поэтому ими пользуются, когда выполнение прямых измерений невозможно или сложно. Различают следующие способы косвенных измерений: 1) от дополнительных баз; 2) методом опоясывания; 3) по элементам круга.

Измерение размеров от дополнительных баз производится как на станке, так и вне станков. Дополнительные базы разделяются на жесткие (поверхности детали, части станков, специальные ко­лонки и т. п:), упругие (натянутая струна) и световые. Наиболь­шее применение получили первые, где в качестве средств измерения от дополнительных баз применяют нутромеры, рулетки, мерные ленты, специальные приборы.

На рис. 8.18, а показана схема измерения наружного диаметра детали от дополнительной измерительной базы в виде стойки станка.

Наружный диаметр детали D (мм) определится по формуле

D = 2 (l 1 + d /2 – l 2) ,

где d – диаметр вспомогательной оправки, установленной в центре планшайбы, мм; 1 1 - расстояние от вспомогательной измерительной базы до оправки, измеряется до установки обрабатываемой детали па планшайбу, мм; 1 2 – расстояние от вспомогательной измеритель­ной базы до наружной поверхности, измеренной штихмасом, мм.

При измерении дополнительная база должна располагаться па расстоянии 500-1000 мм от наружной поверхности наибольшей детали, которая может быть обработана на станке.

Дополнительная упругая база состоит из одной или двух струн диаметром 0,5-1 мм, натянутых с усилием 100-150 Н. Измере­ние на расстоянии до струны производится с помощью чувствитель­ного элемента, который обязательно оснащается электрическими или электронными контактами.

В качестве световой дополнительной базы используется световой пучок, создаваемый источником света. Измерительное устройство оснащается фотоэлементом и перемещается вдоль по оси из­меряемой детали. При смещении оси луча электронная схема устройства вырабатывает сигнал, который после усиления подается на двигатель, выполняющий соответствующее перемещение. Система применяется для автоматического управления выдерживания раз­меров и цилиндричности при обточке крупных деталей.

Погрешности измерения от дополнительных баз зависят от размеров детали, температурных условий измерения и других фак­торов. Данные приводятся в специальной литературе.

Сущность метода опоясывания заключается в определении на­ружного диаметра D (мм) детали по результатам измерения длины окружности L (мм) рулеткой или металлической лентой. При из­мерении рулеткой D - L/φπ – t, где π = 3,1416; t – толщина ленты рулетки, мм.

Схема измерения длины окружности путем опоясывания рулет­кой приведена на рис. 8.18, б. Рулетка при измерении натягивается на измеряемую поверхность с определенным усилием 20-60 Н, создаваемым грузами 1 и 4 с помощью блоков 2 и 3. Предельные погрешности измерения деталей методом опоясывания приведены в табл. 8.12.

Таблица 8.12

Предельные погрешности измерения наружных диаметров деталей методом опоясывания с помощью рулетки

Накладные приборы

Довольно часто возникает ситуация, когда дома нужно сделать небольшой ремонт. Например, заменить участок водопровода, системы отопления, канализации или трубы для подачи газа (что самостоятельно делается крайне редко, но все, же возможно теоретически).

Или же необходимо сделать новую систему водоснабжения, и для этого нужно точно определить диаметр старых труб, чтобы приобрести новые того же диаметра, но из другого материала. Или даже поручить ремонт мастерам, но для начала требуется приобрести трубу необходимого диаметра.

Конечно же, в продаже имеется много специализированных измерительных инструментов, позволяющих провести измерения быстро и точно. Например, линейки-циркометры или лазерные измерители. Но в мастерской домашнего мастера не всегда есть наготове такие специализированные высокоточные устройства. Поэтому возникает вопрос, как определить диаметр трубы подручными средствами?

Какие бывают диаметры и в чем они измеряются?

Прежде, чем переходить к измерениям, давайте немного вспомним, что диаметр трубы не обязательно указывается в сантиметрах. Исторически повелось, что часто трубные размеры обозначаются не в метрических (и привычных нам) сантиметрах, а в дюймах. Величина одного дюйма составляет 2,54 см.

Кроме того, нужно учитывать, что у трубы есть два диаметра — наружный и внутренний. Внутренний диаметр определяет пропускную способность трубы (водопроводной, канализационной и так далее). Но наружный диаметр более важен при монтаже — именно по наружной стороне трубы наносится резьба, и по нему определяется резьбовое соединение.

Трубы из разного материала имеют различную толщину стенок, что определяет разницу между диаметрами наружным и внутренним.

Переходим к делу — ищем инструмент

Существует несколько различных способов измерения диаметра трубы. Для повышения точности измерения нужно прибегать к тому или иному способу, чтобы не допустить ошибки. Чаще всего условия выбора зависят от доступности самой трубы.

Самый распространенный и простой способ измерения — при помощи штангенциркуля. Но, во-первых, штангенциркуль есть не в каждом домашнем хозяйстве. А во-вторых, трубы большого диаметра (канализационные, например) не так просто замерить при помощи небольшого бытового измерителя. Но на помощь может прийти самый простой способ, не требующий сложных специализированных инструментов.

Для вычисления диаметра трубы потребуются:

  • Гибкая линейка, портновский сантиметр или рулетка;
  • Знание числа Пи (3,14);
  • Калькулятор.

Измерить таким способом можно как трубу, так и любой другой предмет круглого сечения — колонну, пруток, садовую клумбу и так далее. Нужно выполнить только одно измерение – узнать длину окружности. Для этого следует обернуть трубу гибкой линейкой, сантиметром или рулеткой точно по окружности (если это клумба — то в самой широкой части). Затем разделить полученное значение на 3, 14 (любители точности могут разделить на 3, 1415926) и получить диаметр трубы в сантиметрах.

Для того чтобы перевести размеры в часто применяемые дюймы (для водопроводных труб), нужно умножить полученное значение на 0,398. И наоборот, чтобы перевести указанные в спецификациях (особенно, на трубах импортного производства) дюймы в сантиметры, диаметр в дюймах требуется умножить на 2,54.

Трубы малого диаметра — особенности измерения

Если нужно измерить диаметр тонкой трубы, то не нужно особо ничего выдумывать — проще всего диаметр измеряется обычным штангенциркулем. Единственное условие — это обеспечение доступа к трубе. И, конечно же, наличие самого штангенциркуля. Такой способ подходит для того, чтобы измерять доступные трубы не очень больших диаметров (до 150 мм).

Проще всего приложить штангенциркуль к торцу трубы, прижать его ножки к наружным стенкам и посмотреть на полученное значение. Оно и будет искомым диаметром.

Что делать, если труба недоступна?

Если подобраться к торцу трубы невозможно, (например, она является частью смонтированной системы), то ее диаметр тоже можно измерить штангенциркулем. Просто прижимать циркуль нужно не к торцу, а к боковой поверхности перпендикулярно к трубе. Кроме того, длина ножек измерительного прибора должна быть больше, чем половина диаметра измеряемой трубы.

Основной способ измерения остается тот же, что упоминался раньше. При помощи рулетки или шнура определяется длина окружности. А затем, разделив полученную длину на 3,14 получаем искомый диаметр.

К примеру, если длина окружности составила 31,4 см, то диаметр трубы составляет 314 мм:3,14 = 100 мм.

Метод дистанционного измерения по фото

Эта не совсем стандартная методика определения диаметра используется, когда в наличии нет измерительного инструмента или к трубе невозможно с ним подобраться. В этом случае вопрос, как определить диаметр трубы решается при помощи мобильного телефона или фотоаппарата.

Для этого рядом с трубой располагают предмет всем известного размера (чаще всего — спичечный коробок, длина стенки которого составляет 50 мм, или монету). И фотографируют «инсталляцию» на мобильный телефон. Затем прямо на фотографии (или на экране компьютера) измеряют размеры трубы и известного предмета. Остается только перевести все цифры в реальный размер, пользуясь правилом пропорциональности.

Определение внутреннего диаметра трубы

Проще всего измерить внутренний диаметр трубы на срезе. Например, при помощи штангенциркуля, измерив, внутренний диаметр в максимальной точке. Иногда внутренний диаметр вычисляют, вычитая удвоенную толщину стенок из наружного диаметра.

Методы контроля параметров труб при производстве

В крупном производстве наружный диаметр толстых труб (для водопровода или канализации) также измеряется рулеткой.

Однако при этом используется более точная формула:

D = L:3,14 — 2∆p — 0,2 мм.

Диаметр (D) определяется с учетом удвоенной толщины полотна рулетки (∆p) и делается поправка на прилегание рулетки к стенке трубы, составляющую (из опытных данных) 0,2 мм. Учитывается при замере также величина допустимого отклонения. Например, для трубы диаметром 200 мм отклонение должно составлять не более 1,5 мм в любую сторону.

Чаще всего допустимые отклонения выражаются в процентах. Для изделий диаметром от 820 до 1020 мм отклонение должно составлять не более 7%. Для измерения труб такого диаметра в промышленных условиях применяются ультразвуковые измерители.

Толщина стенок в заводских условиях измеряется непосредственно, при помощи штангенциркуля. При этом величина отклонения толщины стенки от номинальной не должна превышать 5% (особенно в сторону уменьшения).

Кроме того, на производстве контролю подлежат такие параметры изделий, как кривизна и овальность.

  1. Кривизна (отклонение от прямой линии) не должна быть больше 1,5 мм на погонный метр, а общая кривизна не должна превышать 0,15% по отношению к общей длине.
  2. Овальность трубы (то есть отношение к номинальному диаметру разности наибольшего и наименьшего диаметров) не должна быть больше 0,8%-1%. Наибольший и наименьший диаметр можно получить, измерив нутромером внутренние диаметры в двух перпендикулярных плоскостях.

Однако если нужно просто измерить диаметр трубы для замены, то нужны в сложных вычислениях и высокоточных приборах нет. Получить значение диаметра трубы можно, применив подручные средства и знания из школьного курса математики.

Видео: КАК ИЗМЕРИТЬ ДИАМЕТР ТРУБЫ