Виды металлов и их классификация

Сталь электротехническая тонколистовая. Электротехническая сталь и ее свойства

Наибольшее применение в электротехнике получила листовая электротехническая сталь . Эта сталь является сплавом железа с кремнием, содержание которого в ней 0,8 - 4,8%. Такие стали, в которые вводятся в малом количестве какие-либо вещества для улучшения их свойства, называются легированными.

Кремний вводится в железо в виде ферросилиция (сплав сислицида железа FeSi с железом) и находится в нем в растворенном состоянии. Кремний реагирует с наиболее вредной (для магнитных свойств железа) примесью - кислородом, восстанавливая железо из его окислов FеО и образуя кремнезем SiO2, который переходит частично в шлак.

Кремний также способствует выделению углерода из соединения Fе3С (цементит) с образованием графита. Таким образом, кремний устраняет химические соединения железа (FеО и Fе3С), которые вызывают увеличение коэрцитивной силы и увеличивают - . Кроме того, наличие кремния в железе в количестве 4 % и более увеличивает удельное электрическое сопротивление по сравнению с чистым железом, в результате чего уменьшаются потери на .

Несмотря на то что индукция насыщения Вs железа с увеличением кремния в нем з начительно повышается и достигает при 6,4% кремния большой величины (Вs = 2800 гс), все же кремния вводят не более 4,8%. Увеличение содержания кремния более 4,8% приводит к тому, что стали приобретают повышенную хрупкость, т. е. механические свойства их ухудшаются.

Выплавляется электротехническая сталь в мартеновских печах. Листы изготовляют прокаткой стального слитка в холодном или горячем состоянии. Поэтому различают холодно- и горячекатаную электротехническую сталь .

Железо имеет кубическую кристаллическую структуру. По исследованию намагничивания оказалось, что оно может быть неодинаково по различным направлениям этого куба. Наибольшим намагничиванием кристалл обладает в направлении ребра куба, меньшим - по диагонали грани и самым малым - по диагонали куба. Поэтому желательно, чтобы все кристаллики железа в листе выстроились в процессе прокатки в ряды по направлению ребер куба.

Это достигается повторными прокатками листов стали, с сильным обжатием (до 70%) и последующим отжигом в атмосфере водорода. Это способствует очищению стали от кислорода и углерода, а также укрупнению кристаллов и ориентировке их таким образом, чтобы ребра кристаллов совпадали с направлением прокатки. Такие стали называются текстурованными . У них магнитные свойства по направлению прокатки выше, чем у обычной горячекатаной стали.

Листы текстурованной стали изготовляются холодной прокаткой. их выше, а потери на гистерезис меньше, чем у горячекатаных листов. Кроме того, у холоднокатаной стали индукция в слабых магнитных полях возрастает сильнее, чем у горячекатаной, т. е. кривая намагничивания в слабых полях располагается значительно выше кривой горячекатаной стали.

Рис. 1. Процесс производства листовой электротехнической стали

Следует, однако, отметить, что в результате ориентировки зерен текстурованной стали по направлению прокатки магнитная проницаемость по другим направлениям меньше, чем у горячекатаных. Так, при индукции 6 = 1,0 тл в направлении прокатки магнитная проницаемость μ м=50000, а в направлении перпендикулярно прокатке μ м - 5500. В связи с этим при сборке Ш-образных сердечников трансформаторов применяют отдельные полосы стали, вырезанные вдоль прокатки, которые затем шихтуют так, чтобы направление магнитного потока совпадало с направлением прокатки стали или составляло бы с ним угол 180°.

На рис. 2 приведены кривые намагничивания электротехнических сталей ЭЗЗОА и Э41 для трех диапазонов напряженностей магнитного поля: 0 - 2,4, 0 - 24 и 0 - 240 а/см .

Рис. 2. Кривые намагничивания электротехнических сталей: а - сталь Э330А (текстурированная), б - сталь Э41 (нетекстурированная)

Электротехническая листовая сталь обладает хорошими магнитными характеристиками - высокой индукцией насыщения, малой коэрцитивной силой и малыми потерями на гистерезис. Благодаря этим свойствам она широко используется в электротехнике для изготовления сердечников статоров и роторов электрических машин, сердечников силовых трансформаторов, трансформаторов тока и магнитопроводов различных электрических аппаратов.

Отечественная электротехническая сталь различается по содержанию в ней кремния, по способу изготовления листов, а также по магнитным и электрическим свойствам.

Буква Э в обозначении стали означает " электротехническая сталь" , первая за буквой цифра (1, 2, 3 и 4) означает степень легирования стали кремнием, причем содержание кремния находится в следующих пределах в %: для слаболегированной стали (Э1) от 0,8 до 1,8, для среднелегированной стали (Э2) от 1,8 до 2,8, для повышеннолегированной стали (ЭЗ) от 2,8 до 3,8, для высоколегированной стали (Э4) от 3,8 до 4,8.

Средняя величина удельного электрического сопротивления электротехнической стали ρ тоже зависит от количества кремния. О н о тем выше, чем больше содержание кремния в стали. Стали мирок Э1 имеют сопротивление ρ =0,25 ом х мм 2 /м , марок Э2 - 0,40 ом х мм2/м, марок ЭЗ - 0,5 ом х мм 2 /м и марок Э4 - 0,6 ом х мм 2 /м.

п еремагничивании (вт/кг). Эти потери тем меньше, чем больше цифра, т. е. больше степень легирования стали кремнием. Нули после этих цифр озн ачают, что сталь холоднокатаная текстурованная (0) и холоднокатаная малотекстурованная (00). Буква А указывает на особо низкие удельные потери при перемагничивании стали.

Электротехническая сталь выпускается в виде листов шириной от 240 до 1000 мм, длиной от 720 до 2000 мм и толщиной 0,1, 0,2, 0,35, 0,5 и 1,0 мм. Наибольшее применение имеют текстурованные стали, поскольку они обладают наибольшими значениями магнитных характеристик.

Рис. 3. Электротехническая сталь

Относится к магнитным сталям, которые используются для изготовления электро- и постоянных магнитов, для сердечников магнитного переменного поля, например, трансформаторов, электроизмерительных приборов и т.д. Магнитная сталь может классифицироваться по магнитным свойствам на магнитотвердую и магнитомягкую. К последним и относится электротехническая сталь, купить которую по невысокой стоимости можно в компании ПромКомлект.

Тонколистовая магнитомягкая сталь, которая используется для изготовления магнитопроводов следующего электротехнического оборудования: трансформаторов, генераторов, дросселей, реле, стабилизаторов и др. Поставка электротехнической стали производится в листах, наиболее популярные размеры которых 750х1500 мм и 1000x2000 мм или в стальных рулонах , что позволяет облегчить процесс раскройки материала.

Классификация электротехнической стали

по технологии производства различают:

  1. холоднокатаные электротехнические стали ГОСТ 21427.1-83, ГОСТ 21427.2-83, содержащие до 3,3 % кремния
  2. горячекатаные электротехнические стали , содержащие до 4,5% кремния

по видам продукции:

  1. листовой прокат электротехнической стали
  2. сортовой прокат электротехнической стали
  3. рулонный прокат электротехнической стали
  4. лента резанная из электротехнической стали

Электротехническая сталь может менять такие электромагнитные свойства как удельное электрическое сопротивление, магнитная проницаемость и другие в зависимости от количества кремния, содержащегося в ней.

Электротехническая сталь обычно подвергается отжигу при 800-850 градусов по Цельсию для снятия механических напряжений. В случае поставки электротехнической стали в неотожженном состоянии, ее необходимо повергать дополнительной термической обработке.

Маркировка электротехнической стали

Электротехническая сталь маркируется цифрами, которыми обозначают следующее:

  • первая цифра - класс по виду прокатки
  • вторая цифра - тип по содержанию кремния
  • третья цифра - по основной нормируемой характеристики
  • четвертая и пятая цифры - значение вышеуказанной характеристики

Кроме того встречается обозначение марки электротехнической стали в буквенно-цифровом виде: буква Э обозначает тип стали, следующая за ней цифра - степень легирования стали кремнием.

К электротехническим сталям относится техническое железо - сплав с углеродом не более 0,02 %. Техническое железо используется в изготовлении сердечников, электромагнитов, пластин аккумуляторов и т.д. Магнитные свойства железа изменяются при переплавках в вакуумной среде, а внутреннее напряжение, как и в случае электромагнитной стали, снижается отжигом.

,

Производство этого вида стали занимает главенствующее место среди прочих магнитных материалов. Сталь электротехническая - это сплав железа с кремнием, доля которого составляет от 0,5% до 5%. Широкую популярность изделий данного вида можно объяснить высокими электромагнитными и механическими свойствами. Изготавливают такую сталь из широко распространенных компонентов, дефицита в которых нет. Это объясняет ее низкую стоимость.

Влияние кремния

Данная составляющая во взаимодействии с железом образует плотный раствор с высоким удельным сопротивлением, величина которого зависит от того, какой процент кремния в сплаве. При воздействии его на чистое железо оно теряет свои магнитные свойства. А вот при воздействии на техническое, наоборот, сказывается положительно. Проницаемость железа возрастает и происходит улучшение стабильности металла. Благоприятное действие кремния (Si) можно объяснить следующим образом. Под влиянием этого элемента происходит переход углерода в графит из состояния цементита, который обладает меньшими магнитными свойствами. Элемент Si оказывает нежелательное воздействие на снижение индукции. Влияние его распространяется на теплопроводность и на плотность железа.

Примеси в составе

В своем составе сталь электротехническая может содержать и другие компоненты: серу, углерод, марганец, фосфор и прочие. Самый вредный из них - углерод (С). Он может находиться в форме как цементита, так и графита. Это по-разному влияет на сплав, так же, как и процент содержания углерода. Чтобы избежать нежелательных включений элемента С, нельзя сталь быстро охлаждать для следующего старения и стабилизации.

Отрицательное воздействие на свойства материала оказывают следующие компоненты: кислород, сера, марганец. Они снижают его магнитные качества. Техническое железо в своем составе обязательно имеет примеси. Здесь их приходится учитывать в совокупности, не так, как для чистого железа.

Можно улучшить свойства стали, применив очистку от примесей. Но такой метод не всегда выгоден на масштабном производстве. А вот с помощью холодной прокатки листовая электротехническая сталь образует в своей структуре магнитные свойства. Это позволяет добиться лучших результатов. Но обязательно необходим дальнейший обжиг.

Холодная прокатка

На протяжении длительного времени считали, что кремний увеличивает хрупкость стали. Производство проходило в основном с помощью горячей прокатки. Рентабельность холодной прокатки была низкой.

Только после того, как было обнаружено, что холодная обработка вдоль направления повышает магнитные свойства материала, она получила широкое применение. Другие направления показали себя только с худшей стороны. Холодная прокатка благотворно повлияла на механические свойства, а также на улучшение качества листовой поверхности, повысила его волнистость и дала возможность штампования.

Отличительные свойства, которые получила сталь электротехническая за счет применения холодной обработки, можно объяснить образованием в ней кристаллографической текстуры. Она отличается несколькими степенями. Они, в свою очередь, зависят от того, при какой температуре проходит прокатка, также от толщины необходимого листа и от того, в какой степени он обжат.

Себестоимость листа одной толщины горячекатаной стали в 2 раза ниже, чем холоднокатаной.

Но данное отрицательное качество полностью компенсируется низкими теплопотерями (их меньше примерно раза в два), высоким качеством и возможностью хорошей штамповки холоднокатаного сплава. Различие в этих сталях - содержание кремния. Его количество составляет от 3,3% до 4,5% соответственно.

ГОСТ

Производители выпускают всего два вида стали, которые соответствуют по ГОСТу.

Первый вид - 802—58 "Электротехническая тонколистовая". Второй - сталь электротехническая ГОСТ 9925—61 "Лента холоднокатаная рулонная из электротехнической стали".

Обозначение

Маркируется буквой «Э», за ней идет номер, цифры которого имеют определенное значение:

  • Первая цифра в значении маркировки означает степень с кремнием. От слаболегированной до высоколегированной, соответственно в цифрах от 1 до 4. Динамные - это стали из групп Э1 и Э2. Трансформаторные - Э3 и Э4.
  • Вторая же цифра маркировки имеет диапазон от 1 до 8. Она показывает электромагнитные свойства материала при применении ее в определенных эксплуатационных условиях. По этой маркировке можно узнать, в каких областях можно применять ту или иную сталь.

Цифра ноль следом за второй цифрой означает, что сталь текстурированная. Если стоят два ноля, то она мало текстурированная.

В конце маркировки можно встретить следующие буквы:

  • «А» - удельные потери материала очень низкие.
  • «П» - материал с высокой прочностью проката и высокой отделкой поверхности.

Сфера эксплуатации

Делится сплав по области применения на три вида:

  • пригодный для работы в сильных и средних магнитных полях (чистота перемагничивания 50 Гц);
  • подходящий для работы в средних полях при частоте до 400 Гц;
  • сталь, которая эксплуатируется в средних и малых магнитных полях.


Листы электротехнической стали выпускают следующих размеров: ширина от 240 до 1000 мм, по длине могут быть от 720 мм до 2000 мм, толщина - в диапазоне от 0,1 до 1 мм. Больше всего применение находят текстурированные стали, так как они обладают высоким значением электромагнитных свойств. Листы такого материала часто используют в электротехнике.

Электротехническая сталь - свойства

Свойства сплава:

  • От этого показателя напрямую зависит качество материала. Сталь применяется там, где необходимо сдержать электричество внутри проводника и доставить его по назначению.
  • Коэрцитивная сила. Отвечает за способность внутреннего магнитного поля к размагничиванию. Для определенных устройств это свойство требуется в разной степени. В трансформаторах и электродвигателях используют детали с высокой способностью размагничивания. У стали данный показатель имеет низкое значение. А вот в электромагнитах нужна, наоборот, высокая коэрцитивная сила. Чтобы скорректировать магнитные свойства, в сплав стали добавляют нужный процент кремния.

  • Ширина Этот показатель должен быть как можно меньше.
  • Чем выше данный показатель, тем лучше материал "справляется" со своими задачами.
  • Толщина листа. Для изготовления многих приборов и деталей используют материалы, толщина которых не превышает одного миллиметра. Однако при необходимости данный показатель уменьшают до значения 0,1 мм.

Применение

Из листовых материалов первого класса можно изготовить разные виды магнитопроводов для реле и регуляторов.

Электротехническая второго класса может быть использована для стартеров электромашин постоянного и переменного токов, сердечников роторов.

Третий класс будет пригоден для изготовления магнитопроводов для а также стартеров крупных синхронных машин.

Чтобы изготовить остов для электрической машины, нужно применить стальное литье, в котором содержание углерода равно не более 1%. Изделия из такого материала подвергают постепенному отжигу. применяют при изготовлении деталей машин, подвергающихся сварке. Из таких видов материалов делают главные полюсы для машин постоянного тока.

Для тех деталей машин, которые несут максимальную нагрузку (пружины, роторы, валы якорей), применяют сплавы с высокими механическими свойствами. Такой материал может содержать в себе никель, хром, молибден и вольфрам. Возможно изготавливать магнитопроводы из электротехнической стали. Они используются для трансформаторов низких частот - 50Гц.

Стержневой магнитопровод

Магнитопроводы делятся они на броневые и стержневые. Каждый вид имеет свои особенности.

Стержневой: у такого магнитопровода стержень вертикальный и имеет ступенчатое сечение, вписанное в окружность. На них особой цилиндрической формой расположены обмотки магнитопровода.


Броневой

Изделия такой конструкции имеют прямоугольную форму, а их стержни имеют поперечное сечение, расположены они горизонтально. Такой тип магнитопровода применяется только в сложных приборах и конструкциях. Поэтому такие конструкции не получили большого распространения.

Итак, мы выяснили, что собой представляет сталь электротехническая и где она используется.

Она является магнитно-мягким материалом, широко применяемым в электротехнических изделиях. В сталь вводят 0,8-4,8 % кремния, что резко повышает удельное электрическое сопротивление. В результате этого в электротехнической стали резко снижаются потери мощности от вихревых токов. Вместе с тем введение кремния снижает потери на гистерезис и увеличивает магнитную проницаемость в слабых и средних полях.

Электротехническая сталь обладает малой коэрцитивной силой и имеет высокую магнитную проницаемость, что делает ее основным материалом, используемым для изготовления различных магнитопроводов в электрических машинах и аппаратах. Электротехническую сталь изготовляют в виде листов толщиной 0,1-0,5 мм горячей или холодной прокатки. Эта сталь в зависимости от состава разделяется на ряд марок: 1111, 1112, 1311, 1411, 3411 и др. Первая цифра в обозначении марки электротехнической стали характеризует класс по структурному состоянию и виду прокатки:
1 - горячекатаная изотропная; 2 - холоднокатаная изотропная; 3 - холоднокатаная анизотропная. Вторая цифра характеризует содержание кремния: 0 - до 0,4 %; 1 - от 0,4 до 0,8 %; 2 - от 0,8 до 1,8 %; 3 - от 1,8 до 2,8 %; 4 - от 2,8 до 3,8 %; 5 - от 3,8 до 4,8 %. Третья цифра характеризует группу по основной нормируемой характеристике: 0 - удельные потери при магнитной индукции В = 1,7 Тл и частоте f = 50 Гц (p 1,7/50); 1 - удельные потери при B = 1,5 Тл и f= 50 Гц (p 1,5/50); 2 -удельные потери при B = 1,0 Тл и f = 400 Гц (p 1,0/400); 6 - магнитная индукция в слабых магнитных полях при B = 0,4 А/М (B 0,4); 7 - магнитная индукция в средних магнитных полях при B=10 А/М (В 1,0). Четвертая цифра указывает порядковый номер типа стали.

Различие горячекатаной и холоднокатаной сталей объясняется в значительной степени их кристаллической структурой. Крупнокристаллические материалы обладают большей магнитной проницаемостью и меньшей коэрцитивной силой, чем мелкокристаллические. Механическая же и термическая обработки позволяют, как известно, изменять размеры кристаллов, а следовательно, а магнитные свойства ферромагнитных материалов. При механической обработке и закалке стали в металле возникают внутренние напряжения, которые препятствуют при намагничивании свободной ориентации элементарных магнетиков в направлении поля. Это вызывает уменьшение магнитной проницаемости и увеличение коэрцитивной силы.

Отжиг стали (нагрев с последующим медленным остыванием), наоборот, вызывает уменьшение внутренних напряжений и возрастание размеров кристаллов. В результате повышается магнитная проницаемость и уменьшается коэрцитивная сила. При горячей прокатке электротехнической стали происходит лишь слабая ориентация зерен стали в направлении прокатки. Такая изотропная сталь имеет приблизительно одинаковые Магнитные свойства в различных направлениях.

Путем повторной холодной прокатки стали и особой термической обработки (отжигом) изготовляют так называемую текстурованную сталь крупнокристаллического строения. В листе текстурованной стали 1 (рис. 353, б) отдельные кристаллы 2 расположены не беспорядочно, а имеют определенную пространственную ориентацию; ребрами куба они устанавливаются в направлении прокатки, вследствие чего направление прокатки совпадает с осью легкого намагничивания этой стали. Такая сталь называется анизотропной и при правильном ее использовании (если направление магнитного потока, проходящего через сердечник, составленный из стальных листов, совпадает с направлением их прокатки) имеет значительно большую магнитную проницаемость и меньшую коэрцитивную силу, чем нетекстурованная. Снижение толщины листа электротехнической стали благоприятно сказывается на снижении потерь от вихревых токов.

Из листовой электротехнической стали 1-го класса изготовляют магнитопроводы различных контакторов реле и регуляторов, из стали 2-го класса - сердечники роторов и статоров электрических машин переменного тока и якорей машин постоянного тока, из стали 3-го класса - магнитопроводы силовых трансформаторов и статоры крупных синхронных машин.

Для изготовления остовов электрических машин постоянного тока применяют стальное литье с содержанием углерода до 1 %. Отлитые из такой стали изделия подвергают медленнрму отжигу. Сварные детали электрических машин изготовляют из конструкционной углеродистой или слаболегированной стали. Из листов этой же стали выполняют главные полюсы машин постоянного тока.

Ответственные детали электрических машин - валы якорей и роторов, стяжные шпильки, пружины - изготовляют из стали с повышенными механическими свойствами - легированной, содержащей в своем составе хром, никель, вольфрам и молибден.

В некоторых электротехнических устройствах возникает необходимость применения немагнитных материалов и, в частности, немагнитных стали или чугуна. Из них выполняют, например, крышки, кожуха и крепежные детали силовых трансформаторов. Для получения такой стали и чугуна в их состав вводят значительные добавки никеля(20-25 % для стали и 9-12 % для чугуна), которые способствуют созданию особой кристаллической структуры, препятствующей образованию областей самопроизвольного намагничивания. Немагнитная сталь и чугун являются парамагнитными материалами. Относительная магнитная проницаемость их составляет 1,05-1,2.