Финансы, экономика

Электрические измерения. Характеристика средств измерения электрических величин Измерение силы тока

Измерение электрических параметров является обязательным этапом при разработке и производстве изделий электроники. Для контроля качества производимых устройств требуется поэтапный контроль их параметров. Правильное определение функционала будущего контрольно-измерительного комплекса требует определения видов электрического контроля: промышленный или лабораторный, полный или выборочный, статистический или однократный, абсолютный или относительный, и так далее.

В структуре производства изделий выделяют следующие виды контроля:

  • Входной контроль;
  • Межоперационный контроль;
  • Контроль рабочих параметров;
  • Приемо-сдаточные испытания.

При производстве печатных плат и электронных узлов (область цикла приборостроения), необходимо осуществлять входной контроль качества исходных материалов и компонентов, электрический контроль качества металлизации готовых печатных плат, контроль рабочих параметров собранных электронных узлов. Для решения данных задач, на современном производстве успешно применяются системы электрического контроля адаптерного типа, а также системы с «летающими» зондами.

Изготовление компонентов в корпусе (цикл корпусированного производства), в свою очередь, потребует входного параметрического контроля отдельных кристаллов и корпусов, последующего межоперационного контроля после проведения разварки выводов кристалла или же его монтажа, и в заключении параметрический и функциональный контроль готового изделия.

Для изготовления полупроводниковых компонентов и интегральных микросхем (кристальное производство) потребуется проводить более детальный контроль электрических характеристик. Изначально необходимо провести контроль свойств пластины, как поверхностных, так и объемных, после чего рекомендуется контролировать характеристики основных функциональных слоев, а после нанесения слоев металлизации, проверять качество её исполнения и электрические свойства. Получив структуру на пластине, необходимо провести параметрический и функциональный контроль, измерение статических и динамических характеристик, проконтролировать целостность сигнала, проанализировать свойства структуры, верифицировать рабочие характеристики.

Параметрические измерения:

Параметрический анализ включает набор методик измерения и контроля достоверности параметров напряжения, тока и мощности, без контроля функционала устройства. Измерение электрических параметров подразумевает приложение электрического воздействия на измеряемое устройство (ИУ) и измерение отклика ИУ. Параметрические измерения проводятся на постоянном токе (стандартные DC измерения вольтамперных характеристик (ВАХ), измерение цепей питания и т.д.), на низких частотах (мультичестотные измерения вольтфарадных характеристик (ВФХ), измерения комплексного импеданса и иммитанса, анализ материалов и т.д.), импульсные измерения (импульсные ВАХ, отладка времени срабатывания и т.д.). Для решения задач параметрических измерений применяется большое количество специализированного контрольно-измерительного оборудования: генераторы сигналов произвольной формы, источники питания (постоянного и переменного тока), источники-измерители, амперметры, вольтметры, мультиметры, измерители LCR и импеданса, параметрические анализаторы и характериографы, и многое другое, а также большое количество аксессуаров, принадлежностей и приспособлений.

Применение:

  • Измерение базовых характеристик (ток, напряжение, мощность) электрических цепей;
  • Измерение сопротивления, емкости и индуктивности пассивных и активных элементов электрических цепей;
  • Измерение полного импиданса и иммитанса;
  • Измерение ВАХ в квазистатическом и импульсном режимах;
  • Измерение ВФХ в квазистатическом и мультичастотном режимах;
  • Характеризация полупроводниковых компонентов;
  • Анализ отказов.

Функциональные измерения:

Функциональный анализ включает набор методик измерения и контроля характеристик устройства при выполнении основных операций. Данные методики позволяют построить модель (физическую, компактную или поведенческую) устройства, основываясь на данных, полученных в процессе измерений. Анализ полученных данных позволяет контролировать стабильность характеристик производимых приборов, исследовать их и разрабатывать новые, отлаживать технологические процессы и корректировать топологию. Для решения задач функциональных измерений применяется большое количество специализированного контрольно-измерительного оборудования: осциллографы, анализаторы цепей, частотомеры, измерители шума, измерители мощности, анализаторы спектра, детекторы и многие другие, а также большое количество аксессуаров, принадлежностей и приспособлений.

Применение:

  • Измерение слабых сигналов: параметры передачи и отражения сигналов, контроль манипуляции;
  • Измерение сильных сигналов: компрессия коэффициента усиления, измерения Load-Pull и т.д.;
  • Генерация и преобразование частоты;
  • Анализ формы сигнала во временной и частотной областях;
  • Измерение коэффициента шума и анализ параметров шума;
  • Верификация чистоты сигнала и анализ интермодуляционных искажений;
  • Анализ целостности сигнала, стандартизация;

Зондовые измерения:

Следует отдельно выделить зондовые измерения. Активное развитие микро- и наноэлектроники привело к необходимости проведения точных и надежных измерений на пластине, возможных только при осуществлении качественного, стабильного и надежного контакта, не разрушающего ИУ. Решение данных задач достигается за счет применения зондовых станций, специально спроектированных под конкретный вид измерений, осуществляющих зондовый контроль. Станции проектируются специализированно, для исключения внешних воздействий, собственных шумов и сохранения «чистоты» эксперимента. Всё измерения приводятся на уровне пластин/осколков, до её разделения на кристаллы и корпусирования.

Применение:

  • Измерение концентрации носителей заряда;
  • Измерение поверхностного и объемного сопротивления;
  • Анализ качества полупроводниковых материалов;
  • Проведение параметрического контроля на уровне пластины;
  • Поведение функционального анализа на уровне пластины;
  • Проведение измерений и контроля электрофизических параметров (см.ниже) полупроводниковых приборов;
  • Контроль качества технологических процессов.

Радиоизмерения:

Измерение радиоизлучений, электромагнитной совместимости, поведение сигнала приемо-передающих устройств и антенно-фидерных систем, а также их помехоустойчивости требуют особых внешних условий проведения эксперимента. RF измерения требуют отдельного подхода. Своё влияние вносят не только характеристики приемника и передатчика, но и внешняя электромагнитная обстановка (не исключая взаимодействия временных, частотных и мощностных характеристик, и кроме того расположение всех элементов системы относительно друг друга, и конструкция активных элементов).

Применение:

  • Радиолокация и пеленгация;
  • Телекоммуникация и системы связи;
  • Электромагнитная совместимость и помехозащищенность;
  • Анализ целостности сигнала, стандартизация.

Электрофизические измерения:

Измерение электрических параметров зачастую плотно взаимодействует с измерением/воздействием физических параметров. Электрофизические измерения применяются для всех приборов, преобразующих какое-либо внешнее воздействие в электрическую энергию и/или наоборот. Светодиоды, микроэлектромеханические системы, фотодиоды, датчики давления, потока и температуры, а также все приборы на их основе, требуют качественного и количественного анализа взаимодействия физических и электрических характеристик приборов.

Применение:

  • Измерение интенсивности, длин волн и направленности излучения, ВАХ, светового потока и, спектра светодиода;
  • Измерение чувствительности и шумов, ВАХ, спектральной и световой характеристик фотодиодов;
  • Анализ чувствительности, линейности, точности, разрешения, пороговых значений, люфта, шума, переходной характеристики и выхода по энергии для МЕМС актуаторов и сенсоров;
  • Анализ характеристик полупроводниковых приборов (таких как МЭМС актуаторы и сенсоры) в вакууме и в камере высокого давления;
  • Анализ характеристик температурных зависимостей, критических токов и влияния полей в сверхпроводниках.

Измерением называется процесс нахождения опытным путем значения физической величины с помощью специальных технических средств. Электроизмерительные приборы широко используются при наблюдении за работой электроустановок, при контроле за их состоянием и режимами работы, при учете расхода и качества электрической энергии, при ремонте и наладке электротехнического оборудования.

Электроизмерительными приборами называют средства электрических измерений, предназначенные для выработки сигналов, функционально связанных с измеряемыми физическими величинами в форме, доступной для восприятия наблюдателем или автоматическим устройством.

Электроизмерительные приборы делятся:

  • по виду получаемой информации на приборы для измерения электрических (ток, напряжение, мощность и др.) и неэлектрических (температура, давление и др.) величин;
  • по методу измерения - на приборы непосредственной оценки (амперметр, вольтметр и др.) и приборы сравнения (измерительные мосты и компенсаторы);
  • по способу представления измеряемой информации - на аналоговые и дискретные (цифровые).

Наибольшее распространение получили аналоговые приборы непосредственной оценки, которые классифицируются по признакам: род тока (постоянный или переменный), род измеряемой величины (ток, напряжение, мощность , сдвиг фаз), принцип действия (магнитоэлектрические, электромагнитные, электро- и ферродинамические), класс точности и условия эксплуатации.

Для расширения пределов измерения электрических приборов на постоянном токе используются шунты (для тока) и добавочные сопротивления Rd (для напряжения); на переменном токе трансформаторы тока (тт) и напряжения (тн).

Используемые приборы для измерения электрических величин.

Измерение напряжения осуществляется вольтметром (V), подключаемым непосредственно на зажимы исследуемого участка электрической цепи.

Измерение тока осуществляется амперметром (А), включаемым последовательно с элементами исследуемой цепи.

Измерение мощности (W) и сдвига фаз () в цепях переменного тока производится с помощью ваттметра и фазометра. Эти приборы имеют две обмотки: неподвижную токовую, которая включается последовательно, и подвижную обмотку напряжения, включаемую параллельно.

Для измерения частоты переменного тока (f) применяются частотометры.

Для измерения и учета электрической энергии - счетчики электрической энергии, подключаемые к измерительной цепи аналогично ваттметрам.

Основными характеристиками электроизмерительных приборов являются: погрешность, вариации показаний, чувствительность, потребляемая мощность, время установления показаний и надежность.

Основными частями электромеханических приборов являются электроизмерительная цепь и измерительный механизм.

Измерительная цепь прибора является преобразователем и состоит из различных соединений активного и реактивного сопротивлений и других элементов в зависимости от характера преобразования. Измерительный механизм преобразует электромагнитную энергию в механическую, необходимую для углового перемещения его подвижной части относительно неподвижной. Угловые перемещения стрелки а функционально связано с крутящим и противодействующим моментом прибора уравнением преобразования вида:

к - конструктивная постоянная прибора;

Электрическая величина, под действием которой стрелка прибора отклоняется на угол

На основании данного уравнения можно утверждать, что если:

  1. входная величина Х в первой степени (п=1), то а будет менять знак при изменении полярности, и на частотах, отличных от 0, прибор работать не может;
  2. n=2, то прибор может работать как на постоянном, так и на переменном токе;
  3. в уравнение входит не одна величина, то в качестве входной можно выбирать любую, оставляя остальные постоянными;
  4. две величины являются входными, то прибор можно использовать в качестве множительного преобразователя (ваттметр, счетчик) или делительного (фазометр, частотометр);
  5. при двух или более входных величинах на несинусоидальном токе прибор обладает свойством избирательности в том смысле, что отклонение подвижной части определяется величиной только одной частоты.

Общими элементами являются: отсчетное устройство, подвижная часть измерительного механизма, устройства для создания вращающего, противодействующего и успокаивающего моментов.

Отсчетное устройство имеет шкалу и указатель. Интервал между соседними метками шкалы называют делением.

Цена деления прибора представляет собой значение измеряемой величины, вызывающее отклонение стрелки прибора на одно деление и определяется зависимостями:

Шкалы могут быть равномерными и неравномерными. Область между начальным и конечным значениями шкалы называют диапазоном показаний прибора.

Показания электроизмерительных приборов несколько отличаются от действительных значений измеряемых величин. Это вызвано трением в измерительной части механизма, влиянием внешних магнитных и электрических полей, изменением температуры окружающей среды и т.д. Разность между измеренным Аи и действительным Ад значениями контролируемой величины называется абсолютной погрешностью измерений:

Так как абсолютная погрешность не дает представления о степени точности измерений, то используют относительную погрешность:

Поскольку действительное значение измеряемой величины при измерении неизвестно, для определения и можно воспользоваться классом точности прибора.

Амперметры, вольтметры и ваттметры подразделяются на 8 классов точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Цифра, обозначающая класс точности, определяет наибольшую положительную или отрицательную основную приведенную погрешность, которую имеет данный прибор. Например, для класса точности 0,5 приведенная погрешность составит ±0,5%.

Технические характеристики амперметров
Наименование параметра Амперметры Э47 Вольтметры Э47
Система электромагнитная электромагнитная
Способ вывода информации аналоговый аналоговый
Диапазон измерений 0...3000 А 0...600 В
Способ установки на панель щита на панель щита
Способ включения <50 А- непосредственный, >100 А-через трансформатор тока с вторичным током 5 А непосредственный
Класс точности 1,5 1,5
Предел допускаемой основной погрешности приборов, % ±1,5 ±1,5
Номинальное рабочее напряжение, не более 400 В 600 В
Допустимая длительная перегрузка (не более 2 ч) 120% от конечного значения диапазона измерений
Средняя наработка до отказа, не менее, ч 65000 65000
Средний срок службы, не менее, лет 8 8
Температура окружающего воздуха, °С 20±5 20±5
Частота измеряемой величины, Гц 45...65 45...65
Положение монтажной плоскости вертикальное вертикальное
Габариты, мм 72x72x73,5 96x96x73,5 72x72x73,5 96x96x73,5

Электроизмерительные приборы (амперметры и вольтметры) серии Э47

Применяются в низковольтных комплектных устройствах в распределительных электрических сетях жилых, коммерческих и производственных объектов.

Амперметры Э47 - аналоговые электромагнитные электроизмерительные приборы - предназначены для измерения силы тока в электрических цепях переменного тока.

Вольтметры Э47 - аналоговые электромагнитные электроизмерительные приборы - предназначены для измерения напряжения в электрических цепях переменного тока.

Широкий диапазон измерений: амперметры до 3000 А, вольтметры до 600 В. Класс точности 1.5.

Амперметры, рассчитанные на измерение токов выше 50 А подключают к измеряемой цепи через трансформатор тока с номинальным вторичным рабочим током 5 А.

Принцип действия амперметров и вольтметров серии Э47

Амперметры и вольтметры Э47 относятся к приборам с электромагнитной системой. В составе имеют круглую катушку с помещенными внутрь подвижным и неподвижным сердечниками. При протекании тока через витки катушки, создается магнитное поле, намагничивающее оба сердечника. Вследствие чего.

одноименные полюса сердечников отталкиваются, и подвижный сердечник поворачивает ось со стрелкой. Для защиты от негативного влияния внешних магнитных полей, катушка и сердечники защищены металлическим экраном.

Принцип действия приборов магнитоэлектрической системы основан на взаимодействии поля постоянного магнита и проводников с током, а электромагнитной - на втягивании стального сердечника в неподвижную катушку при существовании в ней тока. Электродинамическая система имеет две катушки. Одна из катушек, подвижная, укрепляется на оси и располагается внутри неподвижной катушки.

Принцип действия прибора, возможность его работы в тех или иных условиях, возможные предельные погрешности прибора могут быть установлены по условным обозначениям, нанесенным на циферблат прибора.

Например: (А) - амперметр; (~) - переменный ток в пределах от 0 до 50А; () - вертикального положения, класс точности 1,0 и т.д.

Измерительные трансформаторы тока и напряжения имеют ферромагнитные магнитопроводы, на которых располагаются первичные и вторичные обмотки. Число витков вторичной обмотки всегда больше первичной.

Зажимы первичной обмотки трансформатора тока обозначают буквами Л1 и Л2 (линия), а вторичной - И1 и И2 (измерение). По правилам техники безопасности один из зажимов вторичной обмотки трансформатора тока, так же, как и трансформатора напряжения, заземляют, что делается на случай повреждения изоляции. Первичную обмотку трансформатора тока включают последовательно с объектом, у которого проводят измерения. Сопротивление первичной обмотки трансформатора тока мало по сравнению с сопротивлением потребителя. Вторичная обмотка замыкается на амперметр и токовые цепи приборов (ваттметр, счетчик и т. д.). Токовые обмотки ваттметров, счетчиков и реле рассчитывают на 5А, вольтметры, цепи напряжения ваттметров, счетчиков и обмоток реле - на 100 В.

Сопротивления амперметра и токовых цепей ваттметра невелики, поэтому трансформатор тока работает фактически в режиме короткого замыкания. Номинальный ток вторичной обмотки равен 5А. Коэффициент трансформации трансформатора тока равен отношению первичного тока к номинальному току вторичной обмотки, а у трансформатора напряжения - отношению первичного напряжения ко вторичному номинальному.

Сопротивление вольтметра и цепей напряжения измерительных приборов всегда велико и составляет не менее тысячи Ом. В связи с этим трансформатор напряжения работает в режиме холостого хода.

Показания приборов, включенных через трансформаторы тока и напряжения, необходимо умножать на коэффициент трансформации.

Трансформаторы тока ТТИ

Трансформаторы тока ТТИ предназначены: для применения в схемах учета электроэнергии при расчетах с потребителями; для применения в схемах коммерческого учета электроэнергии; для передачи сигнала измерительной информации измерительным приборам или устройствам защиты и управления. Корпус трансформатора выполнен неразборным и опломбирован наклейкой, что делает невозможным доступ ко вторичной обмотке. Клеммные зажимы вторичной обмотки закрываются прозрачной крышкой, что обеспечивает безопасность при эксплуатации. Кроме того, крышку можно опломбировать. Это особенно важно в схемах учета электроэнергии, так как позволяет исключить несанкционированный доступ к клеммным зажимам вторичной обмотки.

Встроенная медная луженая шина у модификации ТТИ-А - дает возможность подключения как медных, так и алюминиевых проводников.

Номинальное напряжениe - 660 В; номинальная частота сети - 50 Гц; класс точности трансформатора 0,5 и 0,5S; номинальный вторичный рабочий ток - 5А.

Технические характеристики трансформаторов ТТИ
Модификации трансформаторов Номинальный первичный ток трансформатора, А
ТТИ-А 5; 10; 15; 20; 25; 30; 40; 50; 60; 75; 80; 100; 120; 125; 150; 200; 250; 300; 400; 500; 600; 800; 1000
ТТИ-30 150; 200; 250; 300
ТТИ-40 300; 400; 500; 600
ТТИ-60 600; 750; 800; 1000
ТТИ-85 750; 800; 1000; 1200; 1500
ТТИ-100 1500; 1600; 2000; 2500; 3000
ТТИ-125 1500; 2000; 2500; 3000; 4000; 5000

Электронные аналоговые приборы представляют собой сочетание различных электронных преобразователей и магнитоэлектрического прибора и служат для измерения электрических величин. Они обладают высоким входным сопротивлением (малым потреблением энергии от объекта измерения) и высокой чувствительностью. Используются для измерения в цепях повышенной и высокой частоты.

Принцип действия цифровых измерительных приборов основан на преобразовании измеряемого непрерывного сигнала в электрический код, отображаемый в цифровой форме. Достоинствами являются малые погрешности измерения (0.1-0,01 %) в широком диапазоне измеряемых сигналов и высокое быстродействие от 2 до 500 измерений в секунду. Для подавления индустриальных помех они снабжены специальными фильтрами. Полярность выбирается автоматически и указывается на отсчетном устройстве. Содержат выход на цифропечатающее устройство. Используются как для измерения напряжения и тока, так и пассивных параметров - сопротивление, индуктивность, емкость. Позволяют измерять частоту и ее отклонение, интервал времени и число импульсов.


5. Техническое обслуживание линейных сооружений
5.1. Общие положения
5.2. Осмотр и профилактическое обслуживание линейно-кабельных сооружений
5.3. Осмотр и профилактическое обслуживание воздушных линий
5.4. Измерения электрических характеристик кабельных, воздушных и смешанных линий
5.5. Проверка новых кабелей, проводов, оконечных кабельных устройств и арматуры, поступающих в эксплуатацию
6. Устранение повреждений кабельных,воздушных и смешанных линий
6.1. Организация работ по устранению аварий и повреждений линий
6.2. Методы отыскания и устранения повреждений кабельных линий
6.2.1. Общие указания
Правила обслуживания и ремонта кабелей связи
5.4. Измерения электрических характеристик кабельных, воздушных и смешанных линий

5.4.1. Измерение электрических характеристик кабельных, воздушных и смешанных линий местных сетей связи проводят с целью проверки соответствия характеристик установленным нормам и предупреждения аварийного состояния.

5.4.2. Электрические измерения линий проводятся измерительной группой предприятия связи в соответствии с действующими "Руководствами" по электрическим измерениям линий ГТС и СТС.

5.4.3. Измерительная группа выполняет следующие виды электрических измерений линий:

Плановые (периодические);

Измерения по определению мест повреждений;

Контрольные измерения, проводимые после выполнения ремонтных и восстановительных работ;

Измерения при приемке в эксплуатацию вновь построенных и реконструированных линий;

Измерения по уточнению трассы кабельной линии и глубины залегания кабеля;

Измерения для проверки качества изделий (кабелей, проводов, разрядников, предохранителей, плинтов, боксов, коммутационных коробок, изоляторов и т.п.), поступающих от промышленности, перед установкой (монтажом) их на линиях.

Виды измеряемых параметров и объемы плановых, контрольных и приемо-сдаточных измерений электрических характеристик кабельных, воздушных и смешанных линий местных сетей связи приведены в указанных в п. 5.4.2. "Руководствах".

5.4.4. Измеренные электрические характеристики кабельных, воздушных и смешанных линий местных сетей связи должны соответствовать нормам, приведенным в Приложении 4 .

5.4.5. Результаты плановых, контрольных и аварийных измерений электрических характеристик линий служат исходными данными при определении состояния линейных сооружений и основанием при разработке планов текущего и капитального ремонта и проектов реконструкции сооружений.

При изучении электротехники приходится иметь дело с электрическим, магнитными и механическими величинами и измерять эти величины.

Измерить электрическую, магнитную или какую-либо иную величину - это значит сравнить ее с другой однородной величиной, принятой за единицу.

В этой статье рассмотрена классификация измерений, наиболее важная для . К такой классификации можно отнести классификацию измерений с методологической точки зрения, т. е. в зависимости от общих приемов получения результатов измерений (виды или классы измерений), классификацию измерений в зависимости от использования принципов и средств измерений (методы измерений) и классификацию измерений в зависимости от динамики измеряемых величин.

Виды электрических измерений

В зависимости от общих приемов получения результата измерения делятся на следующие виды: прямые, косвенные и совместные.

К прямым измерениям относятся те, результат которых получается непосредственно из опытных данных. Прямое измерение условно можно выразить формулой Y = Х, где Y - искомое значение измеряемой величины; X -значение, непосредственно получаемое из опытных данных. К этому виду измерений относятся измерения различных физических величин при помощи приборов, градуированных в установленных единицах.

Например, измерения силы тока амперметром, температуры - термометром и т. д. К этому виду измерений относятся и измерения, при которых искомое значение величины определяется непосредственным сравнением ее с мерой. Применяемые средства и простота (или сложность) эксперимента при отнесении измерения к прямому не учитываются.

Косвенным называется такое измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвенных измерениях числовое значение измеряемой величины определяется путем вычисления по формуле Y = F(Xl, Х2 ... Хn ), где Y - искомое значение измеряемой величины; Х1 , Х2, Хn - значения измеренных величин. В качестве примера косвенных измерений можно указать на измерение мощности в цепях постоянного тока амперметром и вольтметром.

Совместными измерениями называются такие, при которых искомые значения разноименных величин определяются путем решения системы уравнений, связывающих значения искомых величин с непосредственно измеренными величинами. В качестве примера совместных измерений можно привести определение коэффициентов в формуле, связывающей сопротивление резистора с его температурой: Rt = R20

Методы электрических измерений

В зависимости от совокупности приемов использования принципов и средств измерений все методы делятся на метод непосредственной оценки и методы сравнения.

Сущность метода непосредственной оценки заключается в том, что о значении измеряемой величины судят по показанию одного (прямые измерения) или нескольких (косвенные измерения) приборов, заранее проградуированных в единицах измеряемой величины или в единицах других величин, от которых зависит измеряемая величина.

Простейшим примером метода непосредственной оценки может служить измерение какой-либо величины одним прибором, шкала которого проградуирована в соответствующих единицах.

Вторая большая группа методов электрических измерений объединена под общим названием методов сравнения . К ним относятся все те методы электрических измерений, при которых измеряемая величина сравнивается с величиной, воспроизводимой мерой. Таким образом, отличительной чертой методов сравнения является непосредственное участие мер в процессе измерения.

Методы сравнения делятся на следующие: нулевой, дифференциальный, замещения и совпадения.

Нулевой метод - это метод сравнения измеряемой величины с мерой, при котором результирующий эффект воздействия величин на индикатор доводится до нуля. Таким образом, при достижении равновесия наблюдается исчезновение определенного явления, например тока в участке цепи или напряжения на нем, что может быть зафиксировано при помощи служащих для этой цели приборов - нуль-индикаторов. Вследствие высокой чувствительности нуль-индикаторов, а также потому, что меры могут быть выполнены с большой точностью, получается и большая точность измерений.

Примером применения нулевого метода может быть измерение электрического сопротивления мостом с полным его уравновешиванием.

При дифференциальном методе , так же как и при нулевом, измеряемая величина сравнивается непосредственно или косвенно с мерой, а о значении измеряемой величины в результате сравнения судят по разности одновременно производимых этими величинами эффектов и по известной величине, воспроизводимой мерой. Таким образом, в дифференциальном методе происходит неполное уравновешивание измеряемой величины, и в этом заключается отличие дифференциального метода от нулевого.

Дифференциальный метод сочетает в себе часть признаков метода непосредственной оценки и часть признаков нулевого метода. Он может дать весьма точный результат измерения, если только измеряемая величина и мера мало отличаются друг от друга.

Например, если разность этих двух величин равна 1 % и измеряется с погрешностью до 1 %, то тем самым погрешность измерения искомой величины уменьшается до 0,01%, если не учитывать погрешности меры. Примером применения дифференциального метода может служить измерение вольтметром разности двух напряжений, из которых одно известно с большой точностью, а другое является искомой величиной.

Метод замещения заключается в поочередном измерении искомой величины прибором и измерении этим же прибором меры, воспроизводящей однородную с измеряемой величину. По результатам двух измерений может быть вычислена искомая величина. Вследствие того что оба измерения делаются одним и тем же прибором в одинаковых внешних условиях, а искомая величина определяется по отношению показаний прибора, в значительной мере уменьшается погрешность результата измерения. Так как погрешность прибора обычно неодинакова в различных точках шкалы, наибольшая точность измерения получается при одинаковых показаниях прибора.

Примером применения метода замещения может быть измерение сравнительно большого путем поочередного измерения силы тока, протекающего через контролируемый резистор и образцовый. Питание цепи при измерениях должно производиться от одного и того же источника тока. Сопротивление источника тока и прибора, измеряющего ток, должно быть очень мало по сравнению с изменяемым и образцовым сопротивлениями.

Метод совпадений - это такой метод, при котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадение отметок шкал или периодических сигналов. Этот метод широко применяется в практике неэлектрических измерений.

Примером может служить измерение длины . В электрических измерениях в качестве примера можно привести измерение частоты вращения тела стробоскопом.

Укажем еще классификацию измерений по признаку изменения во времени измеряемой величины . В зависимости от того, изменяется ли измеряемая величина во времени или остается в процессе измерения неизменной, различаются статические и динамические измерения. Статическими называются измерения постоянных или установившихся значений. К ним относятся и измерения действующих и амплитудных значений величин, но в установившемся режиме.

Если измеряются мгновенные значения изменяющихся во времени величин, то измерения называются динамическими . Если при динамических измерениях средства измерений позволяют непрерывно следить за значениями измеряемой величины, такие измерения называются непрерывными.

Можно осуществить измерения какой-либо величины путем измерений ее значений в некоторые моменты времени t1 , t2 и т. д. В результате окажутся известными не все значения измеряемой величины, а лишь значения в выбранные моменты времени. Такие измерения называются дискретными .

Сопротивление, емкость и индуктивность суть основные параметры электрических цепей, с измерением которых часто приходится встречаться на практике. Известно много методов их измерения, а приборостроительная промышленность выпускает для этой цели средства измерения широкой номенклатуры. Выбор того или иного метода измерения и измерительной аппаратуры зависит от вида измеряемого параметра, его значения, требуемой точности измерения, особенностей объекта измерения и т. п. Например, измерение сопротивлений твердых проводников, как правило, производится на постоянном токе, поскольку прибор для измерений в этом случае проще по конструкции и дешевле, чем аналогичный прибор для измерений на переменном токе. Однако измерение в средах, имеющих высокую влажность, или сопротивлений заземлений производится только на переменном токе, так как результат измерения на постоянном токе будет содержать большие погрешности из-за влияния электрохимических процессов.

Основные методы и средства измерения сопротивления электрической цепи постоянному току

Диапазон измеряемых на практике сопротивлений широк (от 10 8 до 10 ь Ом), и его условно делят по значениям сопротивлений на малые (менее 10 Ом), средние (от 10 до 10 6 Ом) и большие (свыше 10 6 Ом), в каждой из которых измерение сопротивлений имеет свои особенности.

Сопротивление - параметр, проявляющийся только при прохождении в цепи электрического тока, поэтому измерения проводятся в работающем устройстве или используется измерительный прибор с собственным источником тока. Необходимо позаботиться о том, чтобы полученная электрическая величина правильно отражала только измеряемое сопротивление и не содержала излишней информации, которая воспринимается как погрешность измерения. Рассмотрим с этой точки зрения особенности измерения малых и больших сопротивлений.

При измерении малых сопротивлений, например обмоток трансформаторов или коротких проводов, через сопротивление пропускается ток, а возникшее на этом сопротивлении падение напряжения измеряется. На рис. 10.1 показана схема соединений при измерении сопротивления К х короткого проводника. Последний подключается к источнику тока I посредством двух соединительных проводников с собственным сопротивлением Я п. В местах соединения этих проводников с измеряемым сопротивлением образуются переходные сопротивления контактов /? к. Значение Я и зависит от материала соединительного проводника, его длины и сечения, значение /? к - от площади соприкасающихся частей, их чистоты и силы сжатия. Таким образом, числовые значения Я и и зависят от многих причин и определить их заранее трудно, но им можно дать примерную оценку. Если соединительные проводники выполнены коротким медным проводом с сечением в несколько квадратных милли-

Рис. 10.1.

проводника

метров, а контактные сопротивления имеют чистую и хорошо сжатую поверхность, то для приближенных оценок можно принять 2(Я и + Я к) * 0,01 Ом.

В качестве измеряемого напряжения в схеме рис. 10.1 можно использовать 11 п, И 22 или?/ 33 . Если выбрано II п, то результат измерения отражает полное сопротивление цепи между зажимами 1-Г:

Яц = ?/,//= Яд+ 2(Л И + Л К).

Здесь второе слагаемое представляет собой погрешность, относительное значение которой 5 в процентах равно:

5 = Я{Х ~ Ях 100 = 2 Кп + Як 100.

к х * х

При измерении малых сопротивлений эта погрешность может быть большой. Например, если принять 2(Я и + Я к) * 0,01 Ом, а Я х = 0,1 Ом, то 5 * 10 %. Погрешность 5 уменьшится, если в качестве измеряемого напряжения выбрать и 22:

Я 22 = и 22 /1 = Я х + 2Я К.

Здесь сопротивление подводящих проводов исключается из результата измерения, но остается влияние Л к.

Результат измерения будет полностью свободен от влияния Я п и Я к, если в качестве измеряемого напряжения выбрать?/ 33 .

Схему включения Я х в таком случае называют четырехзажимной: первая пара зажимов 2-2" предназначена для подвода тока и называется токовыми зажимами, вторая пара зажимов 3-3" - для съема напряжения с измеряемого сопротивления и называется потенциальными зажимами.

Применение токовых и потенциальных зажимов при измерении малых сопротивлений является основным приемом для устранения влияния соединительных проводов и переходных сопротивлений на результат измерения.

При измерении больших сопротивлений, например сопротивлений изоляторов, поступают так: к объекту прикладывают напряжение, а возникший ток измеряют и по нему судят о значении измеряемого сопротивления.

При испытании диэлектриков следует иметь в виду, что их электрическое сопротивление зависит от многих условий - окружающей температуры, влажности, утечек по грязной поверхности, значения испытательного напряжения, продолжительности его действия и т. д.

Измерение сопротивления электрической цепи постоянному току на практике производится наиболее часто методом амперметра и вольтметра, логометрическим или мостовым методом.

Метод амперметра и вольтметра. Этот метод основан на раздельном измерении тока I в цепи измеряемого сопротивления К х и напряжения и на его зажимах и последующем вычислении значения по показаниям измерительных приборов:

Я х = и/і.

Обычно ток / измеряют амперметром, а напряжение и - вольтметром, этим объясняется название метода. При измерении высокоомных сопротивлений, например сопротивления изоляции, ток / мал и его измеряют миллиамперметром, микроамперметром или гальванометром. При измерении низкоомных сопротивлений, например куска провода, оказывается малым значение и и для его измерения применяют милливольтметры, микровольтметры или гальванометры. Однако во всех этих случаях метод измерения сохраняет свое наименование- амперметра и вольтметра. Возможные схемы включения приборов показаны на рис. 10.2, а, б.


Рис. 10.2. Схемы для измерений малых (а) и больших (б) сопротивлений

методом амперметра и вольтметра

Достоинство метода заключается в простоте его реализации, недостаток - в сравнительно невысокой точности результата измерения, которая ограничена классом точности применяемых измерительных приборов и методической погрешностью. Последняя обусловлена влиянием мощности, потребляемой измерительными приборами в процессе измерения, другими словами - конечным значением собственных сопротивлений амперметра Я А и вольтметра Я у.

Выразим методическую погрешность через параметры схемы.

В схеме рис. 10.2, а вольтметр показывает значение напряжения на зажимах Я х, а амперметр - сумму токов 1 У + /. Следовательно, результат измерения Я, вычисленный по показаниям приборов, будет отличаться от Я х:

л _ и и Я*

I + 1 У и/Я х + и Я у 1 + Я х /Я у "

Относительная погрешность измерения в процентах

  • 1 + Я х /Я у

Здесь приближенное равенство справедливо, так как при правильной организации эксперимента предполагается выполнение условия Я у » Я х.

В схеме рис. 10.2, 6 амперметр показывает значение тока в цепи с Я х, а вольтметр - сумму падений напряжений на Я х и и амперметре и А. Учитывая это, можно по показаниям приборов вычислить результат измерения:

+ Я А.

Ц +Ц л

Относительная погрешность измерения в процентах в данном случае равна:

Из полученных выражений для относительных погрешностей видно, что в схеме рис. 10.2, а на методическую погрешность результата измерения оказывает влияние только сопротивление Я у; для снижения этой погрешности необходимо обеспечить условие Я х « Я у. В схеме рис. 10.2, б на методическую погрешность результата измерения оказывает влияние только Я А; снижение этой погрешности достигается выполнением условия Я х » Я А. Таким образом, при практическом использовании данного метода можно рекомендовать правило: измерение малых сопротивлений следует производить по схеме рис. 10.2, а при измерении больших сопротивлений предпочтение следует отдавать схеме рис. 10.2, б.

Методическую погрешность результата измерения можно исключить путем введения соответствующих поправок, но для этого необходимо знать значения Я А и Я у. Если они известны, то из результата измерения по схеме рис. 10.2, б следует вычесть значение Я А; в схеме рис. 10.2, а результат измерения отражает параллельное соединение сопротивлений Я х и Я у, поэтому значение Я х вычисляется по формуле

Если при данном методе применить источник питания с заранее известным напряжением, то необходимость измерения напряжения вольтметром отпадает, а шкалу амперметра можно сразу отградуировать в значениях измеряемого сопротивления. На этом принципе основано действие многих моделей выпускаемых промышленностью омметров непосредственной оценки. Упрощенная принципиальная схема такого омметра показана на рис. 10.3. Схема содержит источник ЭДС?, добавочный резистор Я д и амперметр (обычно микроамперметр) А. При подключении к зажимам схемы измеряемого сопротивления Я х в цепи возникает ток I, под действием которого подвижная часть амперметра поворачивается на угол а, а его указатель отклоняется на а делении шкалы:

С/ Я а + Я А + Я х

где С, - цена деления (постоянная) амперметра; Я А - сопротивление амперметра.

Рис. 10.3. Принципиальная схема омметра с последовательным включением

измеряемого сопротивления

Как видно из этой формулы, шкала омметра нелинейна, и стабильность градуировочной характеристики требует обеспечения стабильности всех величин, входящих в уравнение. Между тем источник питания в такого рода приборах обычно реализуется в виде сухого гальванического элемента, ЭДС которого падает по мере его разряда. Ввести поправку на изменение?, как видно из уравнения, можно путем соответствующей регулировки С„ или Я я. В некоторых омметрах С, регулируется путем изменения индукции в зазоре магнитной системы амперметра с помощью магнитного шунта.

В этом случае поддерживается постоянство отношения ё/С, и градуировочная характеристика прибора сохраняет свое значение независимо от значения ё. Регулировка С, производится так: зажимы прибора, к которым подключается К х, замыкаются накоротко (Я х = 0) и регулировкой положения магнитного шунта добиваются установки указателя амперметра на нулевую отметку шкалы; последняя расположена на крайней правой точке шкалы. На этом регулировка заканчивается, и прибор готов к измерению сопротивлений.

В комбинированных приборах ампервольтомметрах регулировка С, недопустима, так как это приведет к нарушению градуировки прибора в режимах измерений токов и напряжений. Поэтому в таких приборах поправку на изменение ЭДС ё вводят регулировкой сопротивления переменного добавочного резистора Процедура регулировки та же, что и в приборах с регулируемой магнитным шунтом магнитной индукцией в рабочем зазоре. В этом случае градуировочная характеристика прибора изменяется, что приводит к дополнительным методическим погрешностям. Однако параметры схемы выбираются так, чтобы указанная погрешность была небольшой.

Возможен другой способ подключения измеряемого сопротивления - не последовательно с амперметром, а параллельно ему (рис. 10.4). Зависимость между Я х и углом отклонения подвижной части в данном случае также нелинейна, однако нулевая отметка на шкале расположена слева, а не справа, как это имеет место в предыдущем варианте. Такой способ подключения измеряемого сопротивления применяется при измерении малых сопротивлений, так как позволяет ограничить потребляемый ток.

Электронный омметр может быть реализован на базе усилителя постоянного тока с большим коэффициентом усиления, на-

Рис. 10.4.

измеряемого сопротивления

пример, на операционном усилителе (ОУ). Схема такого прибора показана на рис. 10.5. Его главное достоинство - линейность шкалы для отсчета результатов измерений. ОУ охвачен отрицательной обратной связью через измеряемый резистор Я х, питающее стабилизированное напряжение?/ 0 подано на вход усилителя через вспомогательный резистор /?, а к выходу подключен вольтметр РУ При большом собственном коэффициенте усиления ОУ, низком выходном и высоком входном его сопротивлениях, выходное напряжение ОУ есть:

и для заданных значений и 0 и /?, шкалу измерительного прибора можно проградуировать в единицах измерения сопротивления для отсчета значения К х, причем она будет линейной в пределах изменения напряжения от 0 до?/ вых тах - максимального напряжения на выходе ОУ.

Рис. 10.5. Электронный омметр

Из формулы (10.1) видно, что максимальное значение измеряемого сопротивления есть:

«, т „ =-«,%="? 00.2)

Для изменения пределов измерений переключают значения сопротивления резистора /?, или напряжения?/ 0 .

При измерении низкоомных сопротивлений можно в схеме поменять местами измеряемый и вспомогательный резисторы. Тогда выходное напряжение будет обратно пропорционально величине Я х:

и шх =-и 0 ^. (10.3)

Следует заметить, что данный способ включения не позволяет измерять низкоомные сопротивления менее десятков Ом, поскольку внутреннее сопротивление источника опорного напряжения, которое составляет доли или единицы Ом, оказывается включенным последовательно с измеряемым сопротивлением и вносит существенную погрешность в измерения. Кроме того, в этом случае теряется основное преимущество прибора - линейность отсчета измеряемого сопротивления, а сдвиг нуля и входной ток усилителя могут вносить существенные ошибки

Рассмотрим специальную схему для измерения малых сопротивлений, свободную от этих недостатков (рис. 10.6). Измеряемый резистор Я х вместе с резистором Я 3 образует делитель напряжения на входе ОУ. Напряжение на выходе схемы в этом случае равно:

Рис. 10.6.

Если выбрать » Я х, то выражение упростится и шкала прибора будет линейной относительно Я х:

Электронный омметр не позволяет измерять реактивные сопротивления, так как включение измеряемой индуктивности или

емкости в схему изменит фазовые соотношения в цепи обратной связи ОУ и формулы (10.1)-(10.4) станут неверными. Кроме того, ОУ может потерять устойчивость, и в схеме возникнет генерация.

Логометрический метод. Этот метод основан на измерении отношения двух токов /, и / 2 , один из которых протекает по цепи с измеряемым сопротивлением, а другой - по цепи, сопротивление которой известно. Оба тока создаются одним источником напряжения, поэтому нестабильность последнего практически не влияет на точность результата измерения. Принципиальная схема омметра на основе логометра представлена на рис. 10.7. Схема содержит измерительный механизм на основе логометра, магнитоэлектрической системы с двумя рамками, одна из которых при протекании тока создает отклоняющий, а другая - возвращающий момент. Измеряемое сопротивление может быть включено последовательно (рис. 10.7, а) или параллельно (рис. 10.7, б) относительно рамки измерительного механизма.


Рис. 10.7. Схемы омметров на основе логометра для измерения больших (а)

и малых (б) сопротивлений

Последовательное включение применяется при измерении средних и больших сопротивлений, параллельное - при измерении малых сопротивлений. Рассмотрим работу омметра на примере схемы рис. 10.7, а. Если пренебречь сопротивлением обмоток рамок логометра, то угол поворота подвижной части а зависит только от отношения сопротивлений: где /, и / 2 - токи через рамки логометра; Я 0 - сопротивление рамок логометра; /?, - известное сопротивление; Я х - измеряемое сопротивление.

Сопротивлением резистора /?, задается диапазон измеряемых омметром сопротивлений. Напряжение питания логометра влияет на чувствительность его измерительного механизма к изменению измеряемого сопротивления и не должно быть ниже определенного уровня. Обычно напряжение питания логометров устанавливают с некоторым запасом для того, чтобы его возможные колебания не влияли на точность результата измерения.

Выбор напряжения питания и способ его получения зависят от назначения омметра и диапазона измеряемых сопротивлений: при измерении малых и средних сопротивлений применяют сухие батареи, аккумуляторы или источники питания от промышленной сети, при измерении больших сопротивлений - специальные генераторы с напряжением 100, 500, 1000 В и более.

Логометрический метод применен в мегаомметрах ЭС0202/1Г и ЭС0202/2Г с внутренним электромеханическим генератором напряжения. Они применяются для измерения больших (10..10 9 Ом) электрических сопротивлений, для измерения сопротивления изоляции электрических проводов, кабелей, разъемов, трансформаторов, обмоток электрических машин и других устройств, а также для измерения поверхностных и объемных сопротивлений изоляционных материалов.

При измерении с помощью мегаомметра сопротивления электрической изоляции следует учитывать температуру и влажность окружающего воздуха, от значения которых зависят возможные неконтролируемые утечки тока.

Цифровые омметры применяются в научно-исследовательских, поверочных и ремонтных лабораториях, на промышленных предприятиях, изготовляющих резисторы, т. е. там, где требуется повышенная точность измерений. В этих омметрах предусматривается ручное, автоматическое и дистанционное управление диапазонами измерений. Вывод информации о диапазоне измерений, числовом значении измеряемой величины производится в параллельном двоично-десятичном коде.

Структурная схема омметра Щ306-2 представлена на рис. 10.8. Омметр включает в себя блок преобразования /, блок индикации 10, блок управления 9, блок питания, микроЭВМ 4 и блок вывода результатов 11.


Рис. 10.8. Структурная схема омметра типа Щ306-2

Блок преобразования содержит входной масштабный преобразователь 2, интегратор 8 и блок управления 3. Измеряемый резистор 7 подключается в цепь обратной связи операционного усилителя. Через измеряемый резистор в зависимости от такта измерения пропускается ток, соответствующий диапазону измерения, включая дополнительный ток, вызванный смещением нуля операционных усилителей. С выхода масштабного преобразователя напряжение подается на вход интегратора, выполненного по принципу многотактного интегрирования с измерением величины разрядного тока.

Алгоритм управления обеспечивает работу масштабного преобразователя и интегратора, а также связь с микроЭВМ.

В блоке управления происходит заполнение интервалов времени тактовыми импульсами, поступающими затем на входы четырех счетчиков старших и младших разрядов. Информация, полученная на выходах счетчиков, считывается в оперативном запоминающем устройстве (ОЗУ) микроЭВМ.

Съем информации с блока управления о результате измерения и режиме работы омметра, обработка и приведение данных к виду, необходимому для индикации, математическая обработка результата, вывод данных во вспомогательное ОЗУ блока управления, управление работой омметра и другие функции возложены на микропроцессор 5, расположенный в блоке микро-ЭВМ. В этом же блоке находятся стабилизаторы 6 для питания устройств омметра.

Омметр построен на микросхемах повышенной степени интеграции.

Технические характеристики

Диапазон измерений 10Л..10 9 Ом. Класс точности для пределов измерений: 0,01/0,002 для 100 Ом; 0,005/0,001 для 1,10, 100 кОм; 0,005/0,002 для 1 МОм; 0,01/0,005 для 10 МОм; 0,2/0,04 для 100 МОм; 0,5/0,1 для 1 Гом (в числителе даны значения в режиме без накопления данных, в знаменателе - с накоплением).

Число десятичных разрядов: 4,5 в диапазонах с верхним пределом 100 МОм, 1 ГОм; 5,5 в остальных диапазонах в режиме без суммирования, 6,5 в режиме с суммированием.

Портативные цифровые мультиметры, например серии М83 производства Мазїес/і могут использоваться как омметры класса точности 1.0 или 2.5.