Горно-добывающая отрасль

Методика проведения пожарно-тактических расчетов. Распространение пламени по поверхности жидкости

пожар химический боевой управление

Скорость роста площади пожара представляет собой прирост площади пожара за промежуток времени и зависит от скорости распространения горения, формы площади пожара и эффективности ведения боевых действий. Она определяется по формуле:

где: V sn - скорость роста площади пожара, м 2 /мин; ДS n - разность между последующими и предыдущими значениями площади пожара, м 2 ; Дф - интервал времени, мин.

333 м 2 /мин

2000 м 2 /мин

2222 м 2 /мин


Рис 2.

Вывод по графику: Из графика видно, что очень большая скорость развития пожара возникала в начальный период времени, это объясняется свойствами горящего материала (ЛВЖ-ацетон). Разлившийся ацетон быстро достиг пределов помещения и пожар развитие пожара ограничилось противопожарными стенами. Снижению скорости развития пожара способствовало быстрое введение мощных водяных стволов и правильные действия персонала участка (приведен в действие аварийный слив и запущена система пожаротушения не сработавшая в автоматическом режиме, отключена приточная вентиляция).

Определение линейной скорости распространения горения

При исследовании пожаров линейная скорость распространения фронта пламени определяется во всех случаях, так как она используется для получения данных об усредненной скорости распространения горения на типичных объектах. Распространение горения от первоначального места возникновения в различных направлениях может происходить с неодинаковой скоростью. Максимальная скорость распространения горения обычно наблюдается: при движении фронта пламени в сторону проемов, через которые осуществляется газообмен; по пожарной нагрузке

Эта скорость зависит от обстановки на пожаре, интенсивности подачи огнетушащих веществ (ОТВ) и т.д.

Линейная скорость распространения горения, как при свободном развитии пожара, так и при его локализации, определяется из соотношения:

где: L - расстояние, пройденное фронтом горения в исследуемом промежутке времени, м;

ф 2 - ф 1 - промежуток времени, в котором замерялось расстояние, пройденное фронтом горения, мин.

для основных горючих материалов

Таблица 1

Линейная скорость распространения пламени по поверхности материалов

Материал

Линейная скорость распространения пламени по поверхности Х10 2 м·с -1

1. Угары текстильного производства в разрыхленном состоянии

3. Хлопок разрыхленный

4. Лен разрыхленный

5. Хлопок+капрон (3:1)

6. Древесина в штабелях при влажности, %:

7. Подвешенные ворсистые ткани

8. Текстильные изделия в закрытом складе при загрузке 100 от м -2

9. Бумага в рулонах в закрытом складе при загрузке 140 от м 2

10. Синтетический каучук в закрытом складе при загрузке свыше 230 от м 2

11. Деревянные покрытия цехов большой площади, деревянные стены, отделанные древесно-волокнистыми плитами

12. Печные ограждающие конструкции с утеплителем из заливочного ППУ

13. Соломенные и камышитовые изделия

14. Ткани (холст, байка, бязь):

по горизонтали

в вертикальном направлении

в направлении, нормальном к поверхности тканей, при расстоянии между ними 0,2 м

15. Листовой ППУ

16. Резинотехнические изделия в штабелях

17. Синтетическое покрытие “Скортон” при Т= 180°С

18. Торфоплиты в штабелях

19. Кабель ААШв1х120; АПВГЭЗх35+1х25; АВВГЗх35+1х25:

в горизонтальном тоннели сверху вниз при расстоянии между полками 0,2 м

в горизонтальном направлении

в вертикальном тоннели в горизонтальном направлении при расстоянии между рядами 0,2-0,4

Таблица 2

Средняя скорость выгорания и низшая теплота сгорания веществ и материалов

Вещества и материалы

Скорость потери массы х10 3 , кг·м -2· с -1

Низшая теплота сгорания, кДж·кг -1

Диэтиловый спирт

Дизельное топливо

Этиловый спирт

Турбинное масло (ТП-22)

Изопропиловый спирт

Изопентан

Натрий металлический

Древесина (бруски) 13,7 %

Древесина (мебель в жилых и административных зданиях 8-10%)

Бумага разрыхленная

Бумага (книги, журналы)

Книги на деревянных стеллажах

Кинопленка триацетатная

Карболитовые изделия

Каучук CKC

Каучук натуральный

Органическое стекло

Полистирол

Текстолит

Пенополиуретан

Волокно штапельное

Полиэтилен

Полипропилен

Хлопок в тюках 190 кгх м -3

Хлопок разрыхленный

Лен разрыхленный

Хлопок+капрон (3:1)

Таблица 3

Дымообразующая способность веществ и материалов

Вещество или материал

Дымообразующая способность,

Д m , Нп. м 2. кг -1

Бутиловый спирт

Бензин А-76

Этилацетат

Циклогексан

Дизельное топливо

Древесина

Древесное волокно (береза, сосна)

ДСП ГОСТ 10632-77

Фанера ГОСТ 3916-65

Древесноволокнистая плита (ДВП)

Линолеум ПВХ ТУ 21-29-76-79

Стеклопластик ТУ 6-11-10-62-81

Полиэтилен ГОСТ 16337-70

Табак «Юбилейный» 1 сорт, вл.13%

Пенопласт ПВХ-9 СТУ 14-07-41-64

Пенопласт ПС-1-200

Резина ТУ 38-5-12-06-68

Полиэтилен высокого давления ПЭВФ

Пленка ПВХ марки ПДО-15

Пленка марки ПДСО-12

Турбинное масло

Лен разрыхленный

Ткань вискозная

Атлас декоративный

Ткань мебельная полушерстяная

Полотно палаточное

Таблица 4

Удельный выход (потребление) газов при горении веществ и материалов

Вещество или материал

Удельный выход (потребление) газов,

L i , кг. кг -1

Хлопок + капрон (3:1)

Турбинное масло ТП-22

Кабели АВВГ

Кабель АПВГ

Древесина

Древесина, огнезащищенная препаратом СДФ-552

При исследовании пожаров линейная скорость распространения фронта пламени определяется во всех случаях, так как она используется для получения данных об усредненной скорости распространения горения на типичных объектах. Распространение горения от первоначального места возникновения в различных направлениях может происходить с неодинаковой скоростью. Максимальная скорость распространения горения обычно наблюдается: при движении фронта пламени в сторону проемов, через которые осуществляется газообмен; по пожарной нагрузке, имеющей высокий коэффициент поверхности горения; по направлению ветра. Поэтому за скорость распространения горения в исследуемом промежутке времени принимается скорость распространения в том направлении, на котором она является максимальной. Зная расстояние от места возникновения горения до границы фронта пожара на любой момент времени, можно определить скорость его перемещения. Учитывая, что скорость распространения горения зависит от многих факторов, определение её значения ведется при соблюдении следующих условий (ограничений):

1) огонь от очага воспламенения распространяется по всем направлениям с одинаковой скоростью. Поэтому первоначально пожар имеет круговую форму и его площадь можно определить по формуле

S п = ·p · L 2 ; (2)

где k - коэффициент, учитывающий величину угла , в направлении которого происходит распространение пламени; k = 1, если = 360º (прил. 2.1.); k = 0,5 , если α = 180º (прил. 2.3.); k = 0,25 , если α = 90º (прил. 2.4.); L - путь, пройденный пламенем за время τ.

2) при достижении пламенем границ горючей нагрузки или ограждающих стен здания (помещения), фронт горения спрямляется и распространение пламени идет вдоль границы горючей нагрузки или стен здания (помещения);

3) линейная скорость распространения пламени по твердым горючим материалам с развитием пожара меняется:

в первые 10 мин свободного развития пожара V л принимают равной половине ,

после 10 мин - нормативные значения ,

с начала воздействия огнетушащими средствами на зону горения до локализации пожара, используемую в расчете уменьшают в два раза.

4) при горении разрыхленных волокнистых материалов, пыли и жидкостей, линейная скорость распространения горения определяется в интервалах от момента возникновения горения до введения огнетушащих средств на тушение.

Реже определяется скорость распространения горения во время локализации пожара. Эта скорость зависит от обстановки на пожаре, интенсивности подачи огнетушащих веществ (ОТВ) и т. д.

Линейная скорость распространения горения, как при свободном развитии пожара, так и при его локализации, определяется из соотношения


где ΔL – путь, пройденный пламенем за время Δτ, м.

Средние значения V л при пожарах на различных объектах приведены в прил. 1.

При определении скорости распространения горения в период локализации пожара измеряется расстояние, пройденное фронтом горения за время с момента введения первого ствола (на путях распространения горения) до локализации пожара, т.е. когда прирост площади пожара становится равным нулю. Если линейные размеры по схемам и описанию установить не удается, то линейную скорость распространения горения можно определить по формулам круговой площади пожара, а для прямоугольного развития пожара - по скорости роста площади пожара, с учетом того что, то площадь пожара увеличивается по линейной зависимости, и S п = n . a . L (n - число направлений развития пожара, a - ширина площади пожара помещения.

На основании полученных данных значений линейной скорости распространения горения V л (табл. 2.) строится график V л = f (τ) и делаются выводы о характере развития пожара и влиянии на него фактора тушения, (рис. 3.).

Рис. 3. Изменение линейной скорости распространения горения во времени

Из графика (рис. 3.) видно, что в начале развития пожара линейная скорость распространения горения была незначительной, и пожар мог быть ликвидирован силами добровольных пожарных формирований. Спустя 10 мин. после возникновения пожара интенсивность распространения горения резко увеличилась и в 15 ч. 25 мин. линейная скорость распространения горения достигла своего максимального значения. После введения стволов на тушение, развитие пожара замедлилось и к моменту локализации скорость распространения фронта пламени стала равна нулю. Следовательно, были выполнены необходимые и достаточные условия для прекращения распространения пожара:

I ф ≥ I норм

V л, V s п = 0, сил и средств достаточно.

Оригинальный документ ?

Параметры пожара: продолжительность, площадь, температура, теплота, линейная скорость распространения пожара, скорость выгорания горючих веществ, интенсивность газообмена, плотность задымления. Лекция 2

Известно, что основное явление на пожаре - горение, но сами пожары все индивидуальны. Разнообразны виды и режимы горения: кинетическое и диффузионное, гомогенное и гетерогенное, ламинарное и турбулентное, дифлаграционное и детонационное, полное и неполное и т.д.). Разнообразны условия, в которых происходит горение; состояние и расположение горючих веществ, тепло- и массообмен в зоне горения и др. Поэтому каждый пожар необходимо регистрировать, описывать, исследовать, сравнивать с другими, т.е. изучать параметры пожара.

Продолжительность пожара, τ п (мин.). Продолжительностью пожара называется время с момента его возникновения до полного прекращения горения.

Площадь пожара, F п 2 ). Площадью пожара называется площадь проекции зоны горения на горизонтальную или вертикальную плоскость.

На рис. 1 показаны характерные случаи определения площади пожара. На внутренних пожарах в многоэтажных зданиях общая площадь пожара находится как сумма площадей пожаров всех этажей. В большинстве случаев пользуются проекцией на горизонтальную плоскость, сравнительно редко - на вертикальную (при горении одиночной конструкции небольшой толщины, расположенной вертикально, при пожаре на газовом фонтане).

Площадь пожара является основным параметром пожара при оценке его размеров, при выборе метода тушения, при расчете сил и средств, необходимых для его локализации и ликвидации.

Температура пожара, Т п ( K ). Под температурой внутреннего пожара понимают среднеобъемную температуру газовой среды в помещении, а под температурой открытого пожара - температуру пламени. Температура внутренних пожаров ниже, чем открытых.

Линейная скорость распространения пожара, V p (м/с). Под этим параметром понимают скорость распространения горения по поверхности горючего материала в единицу времени. Линейная скорость распространения горения определяет площадь пожара. Она зависнет от вида и природы горючих веществ и материалов, от способности к воспламенению и начальной температуры, от интенсивности газообмена на пожаре и направленности конвективных газовых потоков, от степени измельченности горючих материалов, их пространственного расположения и других факторов.

Линейная скорость распространения горения - величина непостоянная во времени, поэтому в расчетах пользуются средними значениями, которые являются величинами приближенными.

Наибольшей линейной скоростью распространения горения обладают газы, так как в смеси с воздухом они уже подготовлены к горению, лишь необходимо эту смесь нагреть до температуры воспламенения.

Линейная скорость распространения горения жидкостей зависит от их начальной температуры. Наибольшая линейная скорость распространения горения для горючих жидкостей наблюдается при температуре воспламенения, и равна скорость распространения горения по паровоздушным смесям.

Наименьшей линейной скоростью распространения горения обладают твердые горючие материалы, для подготовки к горению которых требуется больше тепла, чем для жидкостей и газов. Линейная скорость распространения горения твердых горючих материалов в значительной степени зависит от их пространственного расположения. Распространение пламени по вертикальным и горизонтальным поверхностям отличается в 5 - 6 раз, а при распространении пламени по вертикальной поверхности снизу вверх и сверху вниз - в 10 раз. Чаще используется линейная скорость распространения горения по горизонтальной поверхности.

Скорость выгорания горючих веществ и материалов. Она является одним из важнейших параметров горения на пожаре. Скорость выгорания горючих веществ и материалов определяет интенсивность тепловыделения на пожаре, а, следовательно, температуру пожара, интенсивность его развития и другие параметры.

Массовой скоростью выгорания называется масса вещества или материала, выгоревшая в единицу времени V M (кг/с). Массовая скорость выгорания также, как и скорость распространения горения зависит от агрегатного состояния горючего вещества или материала.

Горючие газы хорошо перемешиваются с окружающим воздухом, поэтому полностью сгорают в факеле пламени. Массовая скорость выгорания жидкостей определяется скоростью их испарения, поступления паров в зону горения и условиями их смешения с кислородом воздуха. Скорость испарения при равновесном состоянии системы "жидкость-пар" зависит от физико-химических свойств жидкости, ее температуры, упругости паров. При неравновесном состоянии интенсивность испарения жидкости определяется температурой ее поверхностного слоя, которая в свою очередь зависит от интенсивности тепловых потоков от зоны горения, теплоты испарения и условий теплообмена с нижними слоями жидкости.

Для многокомпонентных горючих жидкостей состав их паровой фазы определяется концентрационным составом раствора и зависит от интенсивности испарения и степени равновесия. При интенсивном испарении в поверхностных слоях жидкости происходит процесс разгонки, и состав паровой фазы отличается от равновесного, а массовая скорость выгорания изменяется по мере выгорания более легколетучих фракций.

Процесс выгорания зависит от смешения паров жидкости с кислородом воздуха. Этот процесс зависит от размеров сосуда, от высоты борта над уровнем жидкости (длины пути смешения до зоны горения) и интенсивности внешних газовых потоков. Чем больше диаметр сосуда (до 2 - 2.5 м, дальнейшее увеличение диаметра никак не влияет на рассматриваемый параметр) и высота борта над уровнем жидкости, тем больше длина пути жидкости до зоны горения, соответственно, тем меньше скорость выгорания. Большая скорость ветра и температура горючей жидкости способствуют лучшему смешению паров жидкости с кислородом воздуха и росту скорости выгорания жидкости.

Масса жидкости, выгоревшей в единицу времени с единицы площади поверхности, называется удельной массовой скоростью выгорания V M , кг/(м 2 с).

Объемной скоростью выгорания называется объем жидкости, выгоревшей в единицу времени с единицы площади поверхности горения, V О . Для газов - это объем газа, сгоревший в единицу времени м /с, для жидкостей и твердых веществ и материалов - это удельная объемная скорость выгорания м /(м . с ) либо м/с, т.е. это линейная скорость. Объемная скорость выражает скорость понижения уровня жидкости по мере ее выгорания или скорость выгорания толщины слоя твердого горючего материала.

Фактически объемная скорость выгорания - это скорость понижения уровня жидкости по мере ее выгорания или скорость выгорания толщины твердого горючего материала. Перевод объемной (линейной) скорости в массовую можно осуществить по формуле: V м = .

Скорость выгорания тонких (< 10 мм) слоев жидкости и пленок выше усредненной массовой или линейной скорости выгорания жидкости верхнего уровня резервуара при отсутствии ветра. Скорость выгорания твердых материалов зависит от вида горючего, его состояния (размеров, величины свободной поверхности, положения по отношению к зоне горения и т.д.), температуры пожара, интенсивности газообмена. Удельная массовая скорость выгорания твердых горючих материалов не превышает 0.02 кг/(м 2 с) и редко бывает ниже 0.005 кг/(м 2 с).

Массовая скорость выгорания твердых горючих материалов зависит от отношения площади проемов (F np ), через которые осуществляется газообмен, к площади пожара F np / F n . Например, для древесины при уменьшении площади проемов скорость выгорания снижается.

Приведенная массовая скорость выгорания древесины, кг/(м 2 с).

Относительнаяплощадьпроемов, F пр. / F п.

0.0134

0.25

0.0125

0.20

0.0108

0.16

0.009

0.10

Скорость выгорания твердых горючих материалов принимают пропорциональной площади проемов, т.е.

V м.д. = φ . V м.т. = . V м ,

где V м.д. - действительная приведенная массовая скорость выгорания; V м - табличная приведенная массовая скорость выгорания; φ - коэффициент, учитывающий условия газообмена. Это выражение справедливо при φ = 0.25 - 0.085, а для открытых пожаров принимают φ = 1.

Интенсивность газообмена I т , кг/(м 2 ּ с) - это количество воздуха, поступающее в единицу времени к единице площади пожара. Различают требуемую интенсивность газообмена и фактическую . Требуемая интенсивность газообмена показывает, какое количество воздуха необходимо для поступления в единицу времени на единицу площади для обеспечения полного сгорания материала. Фактическая интенсивность газообмена характеризует фактический приток воздуха. Интенсивность газообмена относится к внутренним пожарам, где ограждающие конструкции ограничивают приток воздуха в помещение, но проемы позволяют определить количество воздух, поступающего в объем помещения.

Интенсивность или плотность задымленности, х. Этот параметр характеризует ухудшение видимости и степени токсичности атмосферы в зоне задымленности. Ухудшение видимости при задымленности определяется плотностью, которая оценивается по толщине слоя дыма, через который не виден свет эталонной лампы, или по количеству твердых частиц, содержащихся в единице объема (г /м 3). Данные о плотности дыма, образующегося при горении веществ, содержащих углерод приведены ниже.

Параметров пожара существует достаточно много: теплота пожара, размер пожара, периметр пожара, фронт распространения пламени, интенсивность излучения пламени и т.д.


Понятие пожарной нагрузки.

Основным фактором, определяющим параметры пожара, является вид и величина пожарной нагрузки. Под пожарной нагрузкой объекта понимают массу всех горючих и трудногорючих материалов, приходящихся на 1 м 2 площади пола помещения или площади, занимаемой этими материалами на открытой площадке:Р г= ,где Р г.н . - пожарнаянагрузка;Р – масса горючих и трудногорючих материалов, кг; F - площадь пола помещения или открытой площадки, м 2 .

В пожарную нагрузку помещений, зданий, сооружений входят не только оборудование, мебель, продукция, сырье и т.д., но и конструктивные элементы зданий, изготовленных из горючих и трудногорючих материалов (стены, пол, потолок, оконные переплеты, двери, стеллажи, перекрытия, перегородки и т.д.). (горючие и трудногорючие материалы, технологическое оборудование) и временную (сырье, готовая продукция).

Пожарная нагрузка каждого этажа, чердака, подвала определяется отдельно. Величина пожарной нагрузки принимается следующей:

- для жилых, административных и промышленных не превышает 50 кг/м 2 , если основные элементы зданий негорючие;

- средняя величина в жилом секторе составляет для 1-комнатных квартир 27

кг/м 2 , 2-комнатных - 30 кг/м 2 , 3-комнатных - 40 кг/м 2 ;

- в зданиях III степени огнестойкости - 100 кг/м 2 ;

- в производственных помещениях, связанных с производством и обработкой

горючих веществ и материалов - 250 - 500 кг/м 2 ;

- в помещениях, где расположены линии современных технологических процессов и высокостеллажных складах - 2000 - 3000 кг/м 2 .

Для твердых горючих материалов важное значение имеет структура пожарной нагрузки, т.е. ее дисперсность и характер ее пространственного размещения (плотно упакованные ряды; отдельные штабеля и пачки; сплошное расположение или с разрывом; горизонтальное или вертикальное). Например, картонные коробки с обувью или рулоны ткани, расположенные:

1.горизонтально на полу склада подвального типа;

2. на стеллажах склада высотой 8 - 16 м,

дают различную динамику пожара. Во втором случае пожар будет распространяться в 5 - 10 раз быстрее.

Степень достаточной "открытости" для горения зависит от размеров поверхности горючего материала, интенсивности газообмена и др. Для спичек зазор в 3 мм достаточен, чтобы каждая спичка горела со всех сторон, а для деревянной плиты размером 2000×2000 мм зазор в 10 - 15 мм недостаточен для свободного горения.

На практике свободной считают поверхность, отстающую от другой близлежащей поверхности на расстоянии 20 - 50 мм. Для учета свободной поверхности пожарной нагрузки введен коэффициент поверхности горения К п .

Коэффициентом поверхности горения называют отношение площади поверхности горения F n .г. к площади пожара F n .г .: К п = F п.г. / F n .

При горении жидкости в резервуарах К п = 1, твердых веществ К п > 1. По этой причине для одного и того же вида твердого горючего материала, например, древесины почти все параметры пожара будут различными в зависимости от коэффициента поверхности горения (горение бревен, досок, стружки, опилок). Для мебельных фабрик (I и II степеней огнестойкости) величина К п колеблется от 0.92 до 4.44. Для большинства видов пожарной нагрузки величина К п не превышает 2-3, редко достигая 4-5.

Коэффициент поверхности горения определяет фактическую величину площади горения, массовую скорость выгорания, интенсивность тепловыделения на пожаре, теплонапряженность зоны горения, температуру пожара, скорость его распространения и другие параметры пожара.

Классификация пожаров и их особенности

Различные виды пожаров можно классифицировать по различным от­личительным особенностям, к которым можно отнести закрытость или от­крытость очага горения, вид агрегатного состояния горящего вещества, ис­пользуемых средств пожаротушения. Все они имеют свои особенности воз­никновения и развития, или место пожара и т.д. Единой универсальной клас­сификации пожаров не существует. Приведем несколько классификаций пожаров, встречающихся в специальной литературе:

I . По протеканию пожара в открытом или ограниченном пространстве .

Ia . Открытые пожары - это пожары, развивающиеся на открытом про­странстве. К ним относятся пожары на технологических установках (ректи­фикационных колоннах, сорбционных башнях, установках нефтяной, газо­вой, химической промышленности), в резервуарах с горючими жидкостями, пожары складов горючих веществ (древесины, твердого топлива), лесные и степные пожары, пожары хлебных массивов. В открытые пожары могут пе­рейти внутренние пожары в зданиях и сооружениях.

К особенностям открытых пожаров можно отнести условия тепло- и газообмена:

1.не происходит накопления тепла в зоне горения, поскольку она не огра­ничена строительными конструкциями;

2.за температуру таких пожаров принимают температуру пламени, которая выше температуры внутреннего пожара, так как за нее принимают темпе­ратуру газовой среды в помещении;

3.газообмен не ограничен конструктивными элементами зданий, поэтому более интенсивен, и зависит от интенсивности и направления ветра;

4.зона теплового воздействия определяется лучистым тепловым потоком, так как конвективные потоки уходят вверх, создавая у основания пожара зону разрежения и обеспечивая интенсивный обдув свежим воздухом, что снижает тепловое воздействие;

5. зона задымления, за исключением горения торфа, на больших площадях и в лесу не создает затруднений по борьбе с открытыми пожарами.

Эти особенности открытых пожаров определяют специфику методов борьбы с ними, применяемых приемов и способов тушения.

К открытому типу относят пожары, называемые огневым штормом, представляющие собой тепловой высокотемпературный вихрь

16. Внутренние пожары происходят в закрытых "замкнутых" пространствах: в зданиях, салонах самолетов, в трюмах кораблей, внутри каких-либо агрегатов. Здесь иногда отдельно выделяют, так называемые, анаэробные пожары, т.е. без доступа воздуха. Дело в том, что существует ряд веществ (нитрированная целлюлоза, нитрат аммония, некоторые ракетные топлива), которые при повышении температуры претерпевают химическое разложение, приводящее к свечению газа, едва отличаемого от пламени.

Внутренние пожары в свою очередь подразделяются на два класса по способу распределения пожарной нагрузки:

- пожарная нагрузка распределена неравномерно в помещении большого объема;

- пожарная нагрузка распределена равномерно на всей площади.

II . По агрегатному состоянию горючего вещества. Различают пожары, вы­званные горением газа, жидкости, твердого вещества. Их горение может быть гомогенным или гетерогенным, т.е. когда горючее и окислитель находятся в одинаковом , либо различных агрегатных состояниях.

III . По скорости распространения зоны горения напожаре: дефлаграционное (медленное) распространение зоны горения (скорость от 0.5 до 50 м/с) и детонационное (взрывное) распространение зоны горения со скоростью ударной волны от нескольких сотен м/с до нескольких км/с.

IV . По виду начальной стадии пожара: самовоспламенение (самовозгорание) горючих веществ и вынужденное(принудительное) зажигание. На практике чаще бывает второй тип возникновения пожара.

V . По характеру горючей среды и рекомендуемым средствам тушения. В соответствии с Международным стандартом установлено деление пожаров на 4 класса: А, В, С, D , внутри которых выделяют подклассы Al , A 2 и т.д. Удобно представить это в табличной форме.

VI . По степени сложности и опасности пожара ему присваивается номер (или ранг). Номер или ранг - условное цифровое выражение количества сил и средств, привлекаемое на тушение пожара в соответствии с расписанием выезда или планом привлечения сил и средств.

Количество номеров вызова зависит от количества подразделений в гарнизоне. Расписание должно предусматривать быстрое сосредоточениенеобходимого (расчетного) количества сил и средств на пожаре при минимальном количестве номера.

При пожаре № 1 выезжает дежурный караул в полном составе в район обслуживания пожарной части, а также на объекты, имеющие свои пожарные подразделения, во все места аварий, стихийных бедствий, где создалась опасность для жизни людей, угроза взрыва или пожара.

По пожару № 2 дополнительно высылают три - четыре отделения (в зависимости от того, сколько прибыло по № 1) на автоцистернах и автонасосах, а также отделения спецслужб. Как правило, дежурные караулы в район выезда соседних пожарных частей выезжают на пожар в полном составе.

В гарнизонах, имеющих по 10 - 12 пожарных частей, предусматривается не более трех рангов пожара, где наиболее целесообразным является такой порядок, при котором по каждому дополнительному номеру, начиная со второго, на пожар выезжали по четыре - пять отделений на основных пожарных автомобилях. При определении количества пожарных отделений, выезжающих на пожар по наибольшему номеру, должен предусматриваться в гарнизоне некоторый резерв на случай возникновения второго пожара. В малочисленных гарнизонах этот резерв может создаваться за счет введения в боевой расчет резервной пожарной техники с личным составом, свободным от несения службы.

Большее число номеров (4 и 5) устанавливается в крупных гарнизонах. При составлении расписания выезда частей по повышенным номерам пожара учитывают состояние дорог и проездов в отдельные районы выезда. Например, при плохих дорогах количество сил, выезжающих по № 2 или 3, увеличивают и направляют с различных направлений. В районы с недостаточным водоснабжением направляют дополнительные автоцистерны и рукавные автомобили. Для отдельных наиболее важных и пожароопасных объектов, на которых возможно быстрое развитие пожара и создание угрозы для жизни людей, предусматривается выезд сил и средств по повышенному номеру пожара при первом сообщении. В перечень таких объектов включаются важные промышленные предприятия или отдельные корпуса, цехи с пожароопасными процессами производства, склады горючих жидкостей и газов, материальных ценностей, детские и лечебные учреждения, клубы, кинотеатры, высотные здания и отдельные зданияобщественных организаций по усмотрению начальникагарнизона пожарной охраны.

На некоторые объекты повышенный номер может и не подаваться по первому сообщению о пожаре, а к пожару № 1 дополнительно могут быть высланыдва - три отделения из пожарных частей на основных или специальных автомобилях.

К расписанию выездов составляются приложения, в которых перечислены:

- объекты, на которые высылаются силы по повышенным номерам пожара;

- безводные участки города, на которые дополнительно направляются автоцистерны и рукавные автомобили;

- многоэтажные здания, на которые при первом сообщении о пожаре дополнительно высылаются автолестницы , автоподъемники, автомобили ГДЗС, дымососные станции.

Количество специальных автомобилей и их тип определяются в зависимости от особенностей объекта. Например, при тушении пожара на нефтебазе предусматривается выезд автомобилей пенного или порошкового тушения; в зданиях музеев, библиотек, книгохранилищ - автомобилей углекислотного тушения и ГДЗС; в высотных зданиях - автолестниц , автоподъемников, автомобилей ГДЗС, дымососных станций.

Над поверхностью жидкого или твердого вещества при любой температуре существует паровоздушная смесь, давление которой в состоянии равновесия определяется давлением насыщенных паров или их концентрацией. С увеличением температуры давление насыщенных паров возрастет но экспоненциальной зависимости (уравнение Клапейрона - Клаузиса):

где Р н „ - давление насыщенного пара, Па; Q„ C11 - теплота испарения, кДж/моль; Т - температура жидкости, К.

Для любой жидкости существует интервал температур, в котором концентрация насыщенных паров над зеркалом (поверхность жидкости) будет находится в области воспламенения, т.е. НКПВ

Для создания НКПВ паров достаточно нагреть до температуры, равной НТПВ, не всю жидкость, а лишь только ее поверхностный слой.

При наличии источника зажигания такая смесь будет способна к воспламенению. Па практике чаще используют понятия «температура вспышки» и «температура воспламенения».

Температура вспышки - минимальная температура жидкости, при которой над ее поверхностью образуется концентрация паров, способная к воспламенению от источника зажигания, однако скорость образования паров недостаточна для поддержания горения.

Таким образом, как при температуре вспышки, так и при нижнем температурном пределе воспламенения над поверхностью жидкости образуется нижний концентрационный предел воспламенения, однако в последнем случае НКПВ создается насыщенными парами. Поэтому температура вспышки всегда несколько выше, чем НТПВ. Хотя при температуре вспышки наблюдается кратковременное воспламенение паров, не способное перейти в устойчивое горение жидкости, тем не менее, при определенных условиях вспышка может стать причиной возникновения пожара.

Температура вспышки принята за основу классификации жидкостей на легковоспламеняющиеся (ЛВЖ) и горючие жидкости (ГЖ). К ЛВЖ относятся жидкости, имеющие температуру вспышки в закрытом сосуде 61 °С и ниже, к горючим - с температурой вспышки более 61°С.

Экспериментально температуру вспышки определяют в приборах открытого и закрытого типа. В сосудах закрытого типа значения температуры вспышки всегда ниже, чем в открытом, поскольку в этом случае пары жидкости имеют возможность диффундировать в атмосферу и для создания горючей концентрации над поверхностью требуется более высокая температура.

В табл. 2.4 приведена температура вспышки некоторых жидкостей, определенных приборами открытого и закрытого типа.

Таблица 2.4

Температура вспышки разных видов жидкости при разных методах определения

Температура воспламенения - минимальная температура жидкости, при которой после воспламенения паров от источника зажигания устанавливается стационарное горение.

У легковоспламеняющихся жидкостей температура воспламенения выше, чем температура вспышки, на 1-5°, при этом, чем ниже температура вспышки, тем меньше разность между температурами воспламенения и вспышки.

У горючих жидкостей, имеющих высокую температуру вспышки, разница между этими температурами доходит до 25-35°. Между температурой вспышки в закрытом тигле и нижним температурным пределом воспламенения имеется корреляционная связь, описываемая формулой

Это соотношение справедливо при Г В(.

Существенная зависимость температур вспышки и воспламенения от условий эксперимента вызывает определенные трудности при создании расчетного метода оценки их величины. Одним из наиболее распространенных из них является полуэмпирический метод, предложенный В. И. Блиновым:

где Г вс - температура вспышки (воспламенения), К; Р нп - парциальное давление насыщенного пара жидкости при температуре вспышки (воспламенения), Па; D () - коэффициент диффузии паров жидкости, с/м 2 ; b - количество молекул кислорода, необходимое для полного окисления одной молекулы горючего; В - константа метода определения.

При расчете температуры вспышки в замкнутом сосуде рекомендуется принимать В = 28, в открытом сосуде В = 45; для расчета температуры воспламенения принимают В = 53.

Температурные пределы воспламенения могут быть рассчитаны:

По известным значениям температуры кипения

где ^н(в)’ 7/ип - соответственно нижний (верхний) температурный предел воспламенения и температура кипения, °С; k, I - параметры, значения которых зависят от вида горючей жидкости;

По известным значениям концентрационных пределов. Для этого сначала определяется концентрация насыщенных паров над поверхностью жидкости

где (р„ п - концентрация насыщенных паров, %; Р н п - давление насыщенных паров, Па; Р 0 - внешнее (атмосферное) давление, Па.

Из формулы (2.41) следует

Опеределив по значению нижнего (верхнего) предела воспламенения давление насыщенного пара, находим температуру, при которой это давление достигается. Она и является нижним (верхним) температурным пределом воспламенения.

По формуле (2.41) можно решать и обратную задачу: рассчитывать концентрационные пределы воспламенения по известным значениям температурных пределов.

Свойство пламени к самопроизвольному распространению наблюдается не только при горении смесей горючих газов с окислителем, но и при горении жидкостей и твердых веществ. При локальном воздействии тепловым источником, например открытым пламенем, жидкость будет прогреваться, возрастет скорость испарения и при достижении поверхностью жидкости температуры воспламенения в месте воздействия теплового источника произойдет зажигание паровоздушной смеси, установится устойчивое пламя, которое затем с определенной скоростью будет распространяться по поверхности и холодной части жидкости.

Что же является движущей силой распространения процесса горения, каков его механизм?

Распространение пламени по поверхности жидкости протекает в результате теплопередачи за счет излучения, конвекции и молекулярной теплопроводности от зоны пламени к поверхности зеркала жидкости.

По современным представлениям основной движущей силой распространения процесса горения является теплоизлучение от пламени. Пламя, обладая высокой температурой (более 1000°С), способно, как известно, излучать тепловую энергию. Согласно закону Стефана - Больцмана интенсивность лучистого теплового потока, отдаваемого нагретым телом, определяется соотношением

где ц я - интенсивность лучистого теплового потока, кВт/м 2 ; 8 0 - степень черноты тела (пламени) (е 0 = 0,75-Н,0); а = = 5,7 10 11 кДж/(м 2 с К 4) - постоянная Стефана - Больцмана; Г г - температура тела (пламени), К; Г 0 - температура среды, К.

Тепло, излучаясь во все стороны, частично поступает и на еще не загоревшиеся участки поверхности жидкости, прогревая их. При повышении температуры поверхностного слоя над прогретым участком процесс испарения жидкости интенсифицируется и образуется паровоздушная смесь. Как только концентрация паров жидкости превысит НКВП, произойдет ее зажигание от пламени. Затем уже этот участок поверхности жидкости начинает интенсивно прогревать соседний участок поверхности жидкости и т.д. Скорость распространения пламени по жидкости зависит от скорости прогрева поверхности жидкости лучистым тепловым потоком от пламени, т.е. от скорости образования горючей паровоздушной смеси над поверхностью жидкости, которая, в свою очередь, зависит от природы жидкости и начальной температуры.

Каждый вид жидкости имееют свою теплоту испарения и температуру вспышки. Чем выше их значения, тем более длительное время необходимо для ее прогрева до образования горючей паровоздушной смеси, тем, следовательно, ниже скорость распространения пламени. С увеличением молекулярной массы вещества в пределах одного гомологического ряда снижается давление паров упругости, возрастают теплота испарения и температура вспышки, соответственно снижается скорость распространения пламени.

Увеличение температуры жидкости повышает скорость распространения пламени, так как время, необходимое для прогрева жидкости до температуры вспышки перед зоной горения, уменьшается.

При вспышке скорость распространения пламени по зеркалу жидкости будет (по физическому смыслу) равна скорости распространения пламени по паровоздушной смеси состава, близкого к НКПВ, т.е. 4-5 см/с. При увеличении начальной температуры жидкости выше температуры вспышки скорость распространения пламени будет зависеть (аналогично скорости распространения пламени) от состава горючей смеси. Действительно, при увеличении температуры жидкости выше температуры ее вспышки концентрация паровоздушной смеси над поверхностью зеркала будет расти от НКВП до 100% (температура кипения).

Следовательно, вначале при повышении температуры жидкости от температуры вспышки до температуры, при которой над поверхностью образуются насыщенные пары, с концентрацией, равной стехиометрической (точнее, несколько выше, чем стехиометрическая), скорость распространения пламени будет нарастать. В закрытых сосудах по мере дальнейшего повышения температуры жидкости скорость распространения пламени начинает снижаться, вплоть до скорости, соответствующей верхнему температурному пределу воспламенения, при котором распространение пламени но паровоздушной смеси станет уже невозможным из-за недостатка кислорода в паровоздушной смеси над поверхностью жидкости. Над поверхностью же открытого резервуара концентрация паров на разных уровнях будет различной: у поверхности она будет максимальной и соответствовать концентрации насыщенного пара при данной температуре, по мере увеличения расстояния от поверхности концентрация постепенно будет снижаться из-за конвективной и молекулярной диффузии.

При температуре жидкости, близкой к температуре вспышки, скорость распространения пламени по поверхности жидкости будет равна скорости его распространения по смеси паров в воздухе на НКПВ, т.е. 3-4 см/с. При этом фронт пламени будет расположен у поверхности жидкости. При дальнейшем увеличении начальной температуры жидкости скорость распространения пламени будет расти аналогично росту нормальной скорости распространения пламени по паровоздушной смеси с увеличением ее концентрации. С максимальной скоростью пламя будет распространяться по смеси с концентрацией, близкой к стехиометрической. Следовательно, с увеличением начальной температуры жидкости выше Г стх скорость распространения пламени будет оставаться постоянной, равной максимальному значению скорости распространения горения по стехиометрической смеси или несколько больше ее (рис. 2.5). Таким образом,

Рис. 25.

1 - горение жидкости в закрытой емкости; 2 - горение жидкости в открытой емкости при изменении начальной температуры жидкости в открытой емкости в широком диапазоне температур (вплоть до температуры кипения) скорость распространения пламени будет изменяться от нескольких миллиметров до 3-4 м/с.

С максимальной скоростью пламя будет распространяться по смеси с концентрацией, близкой к стехиометрической. С увеличением температуры жидкости выше Г стх увеличится расстояние над жидкостью, на котором сформируется стехиометрическая концентрация, а скорость распространения пламени останется прежней (см. рис. 2.5). Это обстоятельство всегда надо помнить, как при организации профилактической работы, так и при тушении пожаров, когда, например, может возникнуть опасность подсоса воздуха в закрытую емкость - ее разгерметизация.

После возгорания жидкости и распространения пламени но ее поверхности устанавливается диффузионный режим ее выгорания , который характеризуется удельной массовой W rM и линейной W V Jl скоростями.

Удельная массовая скорость - масса вещества, выгорающего с единицы площади зеркала жидкости в единицу времени (кг/(м 2 *с)).

Линейная скорость - расстояние, на которое перемещается уровень зеркала жидкости в единицу времени за счет ее выгорания (м/с).

Массовая и линейная скорости выгорания взаимосвязаны через плотность жидкости р:

После воспламенения жидкости температура ее поверхности повышается от температуры воспламенения до кипения, происходит формирование прогретого слоя. В этот период скорость выгорания жидкости постепенно повышается, растет высота факела пламени в зависимости от диаметра резервуара и вида горючей жидкости. После 1-10 мин горения наступает стабилизация процесса: скорость выгорания и размеры пламени остаются в дальнейшем неизменными.

Высота и форма пламени при диффузионном горении жидкости и газа подчиняются одним и тем же закономерностям, поскольку в обоих случаях процесс горения определяется взаимной диффузией горючего и окислителя. Однако если при диффузионном горении газов скорость струи газа не зависит от процессов, протекающих в пламени, то при горении жидкости устанавливается определенная скорость выгорания, которая зависит как от термодинамических параметров жидкости, так и от условий диффузии кислорода воздуха и паров жидкости.

Между зоной горения и поверхностью жидкости устанавливается определенный тепло- и массообмен (рис. 2.6). Часть теплового потока, поступающего к поверхности жидкости q 0y затрачивается на ее нагрев до температуры кипения q ucn . Кроме того, тепло q CT на нагрев жидкости поступает от факела пламени через стенки резервуара за счет теплопроводности. При достаточно большом его диаметре величиной q CT можно прене- бречь, тогда q {) = K „ n +

Очевидно, что

где с - теплоемкость жидкости, кДжДкг-К); р - плотность жидкости, кг/м 3 ; W nc - скорость роста прогретого слоя, м/с; W Jl - линейная скорость выгорания, м/с; 0и СП - теплота парообразования, кДж/кг; Г кип - температура кипения жидкости, К.


Рис. 2.6.

Г () - начальная температура; Г кип - температура кипения;

Т г - температура горения; q KUW q Jl - соответственно конвективный и лучистый тепловые потоки; q 0 - тепловой поток, поступающий на поверхность жидкости

Из формулы (2.45) следует, что интенсивность теплового потока из зоны пламени обусловливает определенную скорость поставки горючего в эту зону, химическое взаимодействие которого с окислителем, в свою очередь, влияет на величину # 0 . В этом и состоит взаимосвязь массо- и теплообмена зоны пламени и конденсированной фазы при горении жидкостей и твердых веществ.

Оценку доли тепла от общего тепловыделения при горении жидкости, которая затрачивается на ее подготовку к горению q 0 , можно провести в следующей последовательности.

Принимая для простоты W rjl = W nx , получим

Скорость тепловыделения с единицы поверхности зеркала жидкости (удельную теплоту пожара q ll7K) можно определить по формуле

где Q H - низшая теплота сгорания вещества, кДж/кг; Р п - коэффициент полноты сгорания.

Тогда, учитывая состояние (2.44) и разделив выражение (2.45) на формулу (2.46), получим

Расчеты показывают, что около 2% от общего тепловыделения при горении жидкости затрачивается на образование и доставку паров жидкости в зону горения. При установлении процесса выгорания температура поверхности жидкости увеличивается до температуры кипения, которая в дальнейшем остается неизменной. Данное утверждение относится к индивидуальной жидкости. Если же рассматривать смеси жидкостей, имеющих разную температуру кипения, то сначала происходит выход легкокипящих фракций, затем - все более высококипящих.

На скорость выгорания значительное влияние оказывает прогрев жидкости по глубине в результате передачи тепла от нагретой лучистым потоком q 0 поверхности жидкости в ее глубь. Этот теплоперенос осуществляется за счет теплопроводности и конвенции.

Прогрев жидкости за счет теплопроводности может быть представлен экспоненциальной зависимостью вида

где Т х - температура слоя жидкости на глубине х, К; Г кип - температура поверхности (температура кипения), К; k - коэффициент пропорциональности, м -1 .

Такой тип температурного поля называется распределением температуры первого рода (рис. 2.7).

Ламинарная конвенция возникает в результате различной температуры жидкости у стенок резервуара и в его центре, а также вследствие фракционной разгонки в верхнем слое при горении смеси.

Дополнительная передача тепла от нагретых стенок резервуара к жидкости приводит к прогреву ее слоев у стенок до более высокой температуры, чем в центре. Более нагретая у стенок жидкость (или даже пузырьки пара в случае ее прогрева у стенок выше температуры кипения) поднимается вверх, что способствует интенсивному промешиванию и быстрому прогреву жидкости на большой глубине. Образуется так называемый гомотермический слой, т.е. слой с практически постоянной температурой, толщина которого увеличивается во время горения. Такое температурное поле называют распределением температуры второго рода.

Рис. 2.7.

1 - распределение температуры первого рода; 2 - распределение температуры второго рода

Образование гомотермического слоя возможно также и в результате фракционной перегонки приповерхностных слоев смеси жидкостей, имеющих различную температуру кипения. По мере выгорания таких жидкостей приповерхностный слой обогащается более плотными высококипя- щими фракциями, которые опускаются вниз, способствуя гем самым конвективному прогреву жидкости.

Установлено, что чем ниже температура кипения жидкости (дизельное топливо, трансформаторное масло), гем труднее образуется гомотермический слой. При их горении температура стенок резервуара редко превышает температуру кипения. Однако при горении влажных высококипя- щих нефтепродуктов вероятность образования гомотермического слоя достаточна высокая. При прогреве стенок резервуара до 100°С и выше образуются пузырьки водяного пара, которые, устремляясь вверх, вызывают интенсивное перемещение всей жидкости и быстрый прогрев в глубине. Зависимость толщины гомотермического слоя от времени горения описывается соотношением

где х - толщина гомотермического слоя на некоторый момент времени горения, м; х пр - предельная толщина гомотермического слоя, м; т - время, отсчитываемое от момента начала формирования слоя, с; р - коэффициент, с -1 .

Возможность образования достаточно толстого гомотермического слоя при горении влажных нефтепродуктов чревата возникновением вскипания и выброса жидкости.

Скорость выгорания существенно зависит от вида жидкости, начальной температуры, влажности и концентрации кислорода в атмосфере.

Из уравнения (2.45) с учетом выражения (2.44) можно определить массовую скорость выгорания:

Из формулы (2.50) очевидно, что на скорость выгорания оказывают влияние интенсивность теплового потока, поступающего от пламени к зеркалу жидкости, и теплофизические параметры горючего: температура кипения, теплоемкость и теплота испарения.

Из табл. 2.5 очевидно, что существует определенное соответствие между скоростью выгорания и затратами тепла на прогрев и испарения жидкости. Так, в ряду бен- золксилолглицеринов с увеличением затрат тепла на прогрев и испарение скорость выгорания снижается. Однако при переходе от бензола к диэтиловому эфиру затраты тепла уменьшаются. Это кажущееся несоответствие обусловлено различием в интенсивности тепловых потоков, поступающих от факела к поверхности жидкости. Лучистый поток достаточно велик для коптящего пламени бензола и мал для относительно прозрачного пламени диэтилового эфира. Как правило, соотношение скоростей выгорания наиболее быстро горящих жидкостей и наиболее медленно горящих достаточно невелико и составляет 3,0-4,5.

Таблица 25

Зависимость скорости выгорания от затрат тепла на прогрев и испарение

Из выражения (2.50) следует, что с увеличением Г 0 скорость выгорания возрастает, поскольку снижаются затраты тепла на прогрев жидкости до температуры кипения.

Содержание влаги в смеси понижает скорость выгорания жидкости, во-первых, вследствие дополнительных затрат тепла на ее испарение, а во-вторых, в результате флегмати- зирующего влияния паров воды в газовой зоне. Последнее приводит к снижению температуры пламени, а следовательно, согласно формуле (2.43), уменьшается и его излучающая способность. Строго говоря, скорость выгорания влажной жидкости (жидкости, содержащей воду) не постоянна, она увеличивается или уменьшается в процессе горения в зависимости от температуры кипения жидкости.

Влажное горючее может быть представлено как смесь двух жидкостей: горючее + вода, в процессе горения которых происходит их фракционная разгонка. Если температура кипения горючей жидкости меньше температуры кипения воды (100°С), то происходит преимущественное выгорание горючего, смесь обогащается водой, скорость выгорания снижается и, наконец, горение прекращается. Если температура кипения жидкости больше 100°С, то, наоборот, сначала преимущественно испаряется влага и концентрация ее снижается. В результате скорость выгорания жидкости возрастает, вплоть до скорости горения чистого продукта.

Как правило, с повышением скорости ветра скорость выгорания жидкости увеличивается. Ветер интенсифицирует процесс смешивания горючего с окислителем, тем самым повышая температуру пламени (табл. 2.6) и приближая пламя к поверхности горения.

Таблица 2.6

Влияние скорости ветра на температуру пламени

Все это повышает интенсивность теплового потока, поступающего на нагрев и испарение жидкости, следовательно, приводит к увеличению скорости выгорания. При большей скорости ветра пламя может сорваться, что приведет к прекращению горения. Так, например, при горении тракторного керосина в резервуаре диаметром 3 м наступал срыв пламени при скорости ветра 22 м/с.

Большинство жидкостей не могут гореть в атмосфере с содержанием кислорода менее 15%. С увеличением концентрации кислорода выше этого предела скорость выгорания растет. В атмосфере, значительно обогащенной кислородом, горение жидкости протекает с выделением большого количества сажи в пламени и наблюдается интенсивное кипение жидкой фазы. Для многокомпонентных жидкостей (бензин, керосин и т.н.) температура поверхности с увеличением содержания кислорода в окружающей среде растет.

Повышение скорости выгорания и температуры поверхности жидкости с ростом концентрации кислорода в атмосфере обусловлено увеличением излучающей способности пламени в результате роста температуры горения и высокого содержания сажи в нем.

Скорость выгорания также значительно меняется с понижением уровня горючей жидкости в резервуаре: происходит снижение скорости выгорания, вплоть до прекращения горения. Поскольку подвод кислорода воздуха из окружающей среды внутрь резервуара затруднен, то при понижении уровня жидкости увеличивается расстояние h np между зоной пламени и поверхностью горения (рис. 2.8). Лучистый поток к зеркалу жидкости уменьшается, а следовательно, уменьшается и скорость выгорания, вплоть до затухания. При горении жидкостей в резервуарах большого диаметра предельная глубина /г пр, при которой происходит затухание горения, очень большая. Так, для резервуара с диаметром 5 м она составляет 11 м, а с диметром Им - около 35 м.