Нефтегазовая промышленность

Индукционные печи: от приготовления еды до плавки металла. Производство и поставка вакуумных индукционных печей по россии и странам снг

Нагревание тел с помощью электромагнитного поля, возникающего от воздействия индуцированным током, называется индукционным нагревом. Электротермическое оборудование, или индукционная печь, имеет разные модели, предназначенные для выполнения задач разного назначения.

Конструкция и принцип действия

По техническим характеристикам устройство является частью установки, используемой в металлургической промышленности. Принцип работы индукционной печи зависит от переменного тока , мощность установки формируется назначением прибора, в конструкцию которого входит:

  1. индуктор;
  2. каркас;
  3. плавильная камера;
  4. вакуумная система;
  5. механизмы перемещения объекта нагревания и другие приспособления.

Современный потребительский рынок располагает большим количеством моделей приборов, работающих по схеме образования вихревых токов. Принцип работы и конструкционные особенности промышленной индукционной печи позволяет выполнять ряд специфических операций, связанных с плавкой цветного металла, термической обработкой изделий из металла, спекания синтетических материалов, очисткой драгоценных и полудрагоценных камней. Бытовые приборы используются для дезинфекции предметов быта и обогрева помещений.

Работа ИП (индукционной печи) заключается в нагревании помещенных в камеру предметов вихревыми токами, излучаемыми индуктором, представляющим собой катушку индуктивности, выполненную в форме спирали, восьмерки или трилистника с обмоткой проводом большого поперечного сечения. Работающий от переменного тока индуктор создает импульсное магнитное поле, мощность которого изменяется в соответствии с частотой тока. Предмет, помещенный в магнитное поле, нагревается до точки закипания (жидкости) или плавления (металл).

Установки, работающие с помощью магнитного поля, производятся в двух типах: с магнитным проводником и без магнитопровода. Первый тип приборов имеет в конструкции индуктор, заключенный в металлический корпус, обеспечивающий быстрое повышение температуры внутри обрабатываемого объекта. В печах второго типа магнитотрон находится снаружи установки.

Особенности индукционных приборов

От мастера также требуются навыки конструирования и монтажа электроприборов. Безопасность устройства индивидуальной сборки заключается в ряде особенностей:

  1. емкости оборудования;
  2. рабочей частоты импульса;
  3. мощности генератора;
  4. вихревых потерь;
  5. гистерезисных потерь;
  6. интенсивности тепловой отдачи;
  7. способа футеровки.

Свое название канальные печи получили за наличие в пространстве агрегата двух отверстий с каналом, образующим замкнутый контур. По конструкционным особенностям прибор не может работать без контура, благодаря которому жидкий алюминий находится в непрерывном движении. При несоблюдении рекомендаций завода изготовителя оборудование самопроизвольно отключается, прерывая процесс плавки.

По расположению каналов индукционные плавильные агрегаты бывают вертикальными и горизонтальными с барабанной или цилиндрической формой камеры. Барабанная печь, в которой можно плавить чугун, выполнена из листовой стали. Поворотный механизм оснащен приводными роликами, электродвигателем на две скорости и цепной передачей.

Жидкая бронза заливается через сифон, расположенный на торцевой стенке, присадки и шлаки загружаются и удаляются через специальные отверстия. Выдача готовой продукции осуществляется через V -образный сливной канал, сделанный в футеровке по шаблону, который расплавляется в рабочем процессе. Охлаждение обмотки и сердечника осуществляется воздушной массой, температура корпуса регулируется при помощи воды.


При плавке металлов в вакууме выделяется значительной количество газов, которые должны удаляться с помощью вакуумных насосов. Первоначальный нагрев металла до 300-400° С сопровождается активной! десорбцией газов, а также испарением и разложением загрязнений на поверхности металла. При дальнейшем нагреве до 700-1000° С (для стали) практически полностью выделяется водород и частично кислород. После окончательного расплавления выделяются в большом количестве кислород, азот, окись углерода. Процесс состоит из стадий нагрева, расплавлен и рафинирования, во время которого удаляются остатки газа.

Методом вакуумной плавки особенно важно получать заготовки из железных сплавов, никеля, меди, молибдена для электровакуумной промышленности; пластичные сорта железа с малым содержанием углерода (армко, трансформаторные и др.), также железо с высокой магнитной проницаемостью; специальные стали и сплавы с пониженным содержанием водорода и азота; нихром;противокоррозионные сплавы на никелевой основе; высокоэлектродную медь и ее сплавы; платину и платиновые металлы; тугоплавкие редкие металлы. Чтобы получить качественный металл, необходимо загрузить ero в герметичную печь и при постепенном нагреве и расплавлении откачивать выделяющиеся из него газы. Время пребывания жидкого перегретого металла в вакууме должно быть достаточным, чтобы произошли полностью все химические реакции и дегазация. Дегазированный металл должен выливаться в изложницу в вакууме. При литье в вакууме металл можно выливать медленно и тонкой струей, не боясь его окисления. Благодаря этому образование усадочных раковин в металле минимально. Не следует также забывать о подборе материала для тигля, так как и из него в процессе работы выделяются пары и газы, присутствие которых в системе может привести к нежелательным результатам.


В индукционной электрической печи материал нагревается током, возбуждаемым внутри заготовки. Заготовка помещена в индукторе (соленоиде), питаемом током промышленной или повышенной частоты (рис. 160). При расчете индукционных вакуумных плавильных пери нужно учитывать специфику процесса: тепло выделяется непосредственно в самом металле, который, в свою очередь, нагревает тигель и футеровку течи. Преимущество индукционного метода нагрева заключается в возможности нагрева металла с большой скоростью, а также в наличии вихревых ков в расплавленном металле. Этот способ дает очень равномерный нагрев металла.

Металл может нагреваться непосредственно при протекании по катушке переменного тока (рис. 161, а) или косвенно теплом излучения и теплопродностью от вспомогательного концентрически расположенного металлического цилиндра, подвергаемого индукционному нагреву (рис. 161, б). В последнем случае тепловой обработке может быть подвергнут и не электропроводный материал; кроме того, здесь проще нагрев образца не цилиндрической формы.

Крупные промышленные индукционные печи для плавления металлов имеют неподвижную жестко закрепленную вакуумную камеру, в которой размещена индукционная катушка с тиглем. Крышка камеры вместе с индуктором и тиглем может отодвигаться. Одна из печей подобного типа показана на рис. 162. Крышка камеры с индукционной катушкой и тиглем трехтонной индукционной печи фирмы Херауэс (ФРГ) показана на рис. 163. Положение тигля и катушки может изменяться на разных стадиях процесса (рис. 164).

Предельное давление в подобных печах составляет 5 1O -4 мм рт. ст., скорость откачки воздуха до 20 ООО л/с при давлении 10 -3 мм рт. ст. Габаритные размеры камеры: диаметр от 2800 до 4500 мм, длина от 2200 до 3000 мм; размеры индуктора: внутренний диаметр от 570 до 900 мм, высота - от 700 до 1200 мм; средний объем тигля - от 80 до 350 л.

Пример применения индукционной печи - получение сплава бронзы I с дисульфидом молибдена. Это антифрикционное вещество можно применять в условиях высокого вакуума и низких температур. Плавильная печь в этом | случае снабжена вакуумным прессом.


Металл здесь нагревается проходящим через него электрическим током. Печи сопротивления обычно применяют для тугоплавких металлов. Электрооборудование этих печей дешевле, чем индукционных. Греющий элемент должен иметь возможно большее удельное сопротивление. Греющими элементами могут служить уголь, графит, крип-тол (зернистый уголь), карборунд, тугоплавкие металлы. В таких печах нагревают и плавят любые вещества; необходимо только, чтобы нагреваемые вещества или продукты их взаимодействия не выделяли паров, разрушающих нагреватели.

Здесь можно спекать металлокерамические сплавы, плавить малолетучие металлы и т. п. На рис. 165 показана вакуумная печь сопротивления для плавки циркония с графитовым нагревателем. Вакуумные печи сопротивления для работы при температурах до 1200° С и давлении 10 -3 - 10 -4 мм рт. ст. с футеровкой из шамота-легковеса применяют также для термической обработки магнитных сплавов, коррозионностойких и жаропрочных сталей, титана, циркония, сплавов на основе титана и циркония, для спекания композиций на основе железа, никеля, меди, для пайки твердыми припоями и т. п.

Дуговые печи позволяют в небольшом объеме выделить одновременно большее количество тепла и быстрее, чем в печах других типов, достичь высокой температуры. Плавку в дуговых в электропечах применяют главным образом в производстве металлов, имеющих большую химическую активность при высоких температурах (молибден, тантал, ти-1ан, цирконий и др.). Особенно хорошие результаты получены с так называемой зависимой дугой, когда между электродом и самим нагреваемым металлом создается дуга. Графитовые электроды при плавке применять нежелательно, так как это может вызвать дополнительную примесь углерода в металле. Обычно используют электроды из вольфрама. Во многих случаях электрод делают из того же металла, который плавят в дуговой печи, причем он постепенно оплавляется (расходуемый электрод).

Практика показала, что плавка в печах с расходуемым электродом дает возможность получать металлы и сплавы высокого качества. Характерной особенностью печи является равномерное выделение газов на протяжении всего цикла.


Схема вакуумной дуговой печи с расходуемым электродом дана на рис. 166. Схема печи фирмы Дегусса (ФРГ) для выплавки специальных сталей с загрузкой 400 кг приведена на рис. 167. На Ижорском заводе пущена мощная печь вакуумно-дугового переплава. Печь выдает слиток сверхчистой стали массой 37 т.

На рис. 168 показана дуговая вакуумная печь фирмы Ульвак (Япония) с расходуемым электродом производительностью 25 т за одну загрузку. Производительность таких печей от 2 кг до 30 т. Печь пригодна для рафинирования и плавления активных металлов и металлов с высокой точкой плавления.


Плавка в высоковакуумной печи с электроннолучевым нагревом дает возможность получать металл высокой чистоты. Рафинирование металла происходит как чисто зонной очисткой (благодаря различию в растворимости примесей в твердом и жидком) металле), так и дегазацией металла в вакууме и испарением примесей с более высокой упругостью пара, чем у очищаемого металла. Для расплавления возможен нагрев с помощью электронной пушки, которая служит катодом и бомбардирует исходный металл (анод). Плавящийся металл стекает в водоохлаждаемую изложницу, где поддерживается в расплавленном состоянии с помощью электронной бомбардировки от другой пушки. При производстве таким методом пластичного ниобия получали слиток длиной 1,2 м и диаметром около 80 мм. При этом скорость плавки ниобия достигала В5- 7 кг/ч, а при повторном переплаве-36 кг/ч.



Плавка с помощью электронной бомбардировки в вакууме имеет преимущества перед вакуумной дуговой плавкой: форма применяемого для плавки образца не имеет значения; расход электроэнергии значительно ниже, так как для поддержания дуги при дуговой плавке необходимы большие токи и низкое напряжение, а для питания электронных пушек - высокое напряжение и низкие токи;применение более высокого вакуума, чем в печах других типов; качество получаемого металла выше, чем в вакуумной дуговой печи.

Преимущества электронного нагрева дают основания считать этот метод перспективным для производства таких металлов, как тантал, молибен, ниобий, бериллий, а также специальных и коррозионностойких сталей.

Рис. 167. Схема высоковакуумной дуговой печи для расплавления специальных сталей с загрузкой 400 кг (фирма Дегусса, ФРГ)

Схема печи показана на рис. 169. Футеровка в такой печи отсутствует, а выделение газов равномерно в течение всего цикла. Для нормальной работы таких печей необходимо поддержание высокого вакуума, поэтому к исходному материалу предъявляют повышенные требования в отношении содержания газов. Исходный материал, предназначенный для плавки в печах электронным нагревом, предварительно плавится в вакуумных индукционных или дуговых печах.

Вфирма Ульвак (Япония) выпускает печи серии FME для плавки электронным лучом тугоплавких металлов: Та, Nb, Ti, Zr, W. Для работы в сверхвысоком вакууме фирма предлагает печи на базе сверхвысоковакуумного откачного агрегата EBD-400.


Такие печи, присоединяемые к сверхвысоко-вакуумному агрегату своим нижним фланцем, показаны на рис. 170. На рис. 170, а показана печь для зонной плавки и рафинирования тугоплавких (W, Та, Mo, Nb) и активных металлов (Ti, Zr), а также полупроводниковых материалов (Ge, Si) при давлениях порядка 10 -9 мм рт. ст. При таких давлениях плавление происходит в абсолютно чистой и сухой среде. В печах можно также обрабатывать сталь, никель и другие металлы. Предельное давление в печи без загрузки после прогревания всей системы в течение 6 ч до 250° С составляет 1 *10 -9 мм рт. ст.

Рис. 171. Схема сверхвысоковакуумной печи с нагревом электронным лучом и с отклоняющей системой (фирма Ульвак, Япония)

Равновесное давление при зонном плавлении тантала и скорости прохода 0,1 мм/мин около 10 -8 мм рт. ст. Размеры образца: диаметр 4-7 мм, длина 200 мм. Эффективная длина при плавлении составляет 120 мм. Максимальная мощность электронной пушки 5 кВт. Расходуемая мощность при непрерывной работе 3 кВт. Мощность, расходуемая системой откачки, 10 кВт; расход воды 20 л/с. Скорость прохода электронной пушки может меняться в широких пределах с целью создания оптимальных условий для плавления и рафинирования. Образец может вращаться со скоростью от 1 до 8 об/мин. Здесь применяется электростатическая электронная пушка с кольцевым катодом.

На рис. 170, б показана печь EBD-400, снабженная электронной пушкой мощностью 6 кВт проникающего типа и водоохлаждаемой медной изложницей. Слитки получают двух видов: либо полукруглой формы (в изложнице 8x5 мм), либо У-образной формы изложница длиной 200 мм, шириной 23 мм и глубиной 15 мм). Давление печи при плавлении тантала и предельное давление те же, что и в предыдущем случае. Электронная пушка, снабженная отклоняющей системой, имеет максимальную мощность 6 кВт при ускоряющем напряжении от 0 до 20 кВ. Диапазон изгибания луча 200 мм в направлении X, 23 мм в направлении Y. Автоматическая развертка возможна для направления X и Y. Мощность системы откачки 10 кВт; расход воды 25 л/мин. Устройство печи EBD-400 EBM показано на рис. 171.

Принцип индукционного нагрева заключается в преобразовании энергии электромагнитного поля, поглощаемой электропроводным нагреваемым объектом, в тепловую энергию.

В установках индукционного нагрева электромагнитное поле создают индуктором, представляющим собой многовитковую цилиндрическую катушку (соленоид). Через индуктор пропускают переменный электрический ток, в результате чего вокруг индуктора возникает изменяющееся во времени переменное магнитное поле. Это — первое превращение энергии электромагнитного поля, описываемое первым уравнением Максвелла .

Нагреваемый объект помещают внутрь индуктора или рядом с ним. Изменяющийся (во времени) поток вектора магнитной индукции, созданной индуктором, пронизывает нагреваемый объект и индуктирует электрическое поле. Электрические линии этого поля расположены в плоскости, перпендикулярной направлению магнитного потока, и замкнуты, т. е. электрическое поле в нагреваемом объекте носит вихревой характер. Под действием электрического поля, согласно закону Ома, возникают токи проводимости (вихревые токи). Это — второе превращение энергии электромагнитного поля, описываемое вторым уравнением Максвелла .

В нагреваемом объекте энергия индуктированного переменного электрического поля необратимо переходит в тепловую. Такое тепловое рассеивание энергии, следствием чего является нагрев объекта, определяется существованием токов проводимости (вихревых токов). Это — третье превращение энергии электромагнитного поля, причем энергетическое соотношение этого превращения описывается законом Ленца-Джоуля .

Описанные превращения энергии электромагнитного поля дают возможность:
1) передать электрическую энергию индуктора в нагреваемый объект, не прибегая к контактам (в отличие от печей сопротивления)
2) выделить тепло непосредственно в нагреваемом объекте (так называемая «печь с внутренним источником нагрева» по терминологии проф. Н. В. Окорокова), в результате чего использование тепловой энергии оказывается наиболее совершенным и скорость нагрева значительно увеличивается (по сравнению с так называемыми «печами с внешним источником нагрева»).

На величину напряженности электрического поля в нагреваемом объекте оказывают влияние два фактора: величина магнитного потока, т. е. число магнитных силовых линий, пронизывающих объект (или сцепленных с нагреваемым объектом), и частота питающего тока, т. е. частота изменений (во времени) магнитного потока, сцепленного с нагреваемым объектом.

Это дает возможность выполнить два типа установок индукционного нагрева, которые различаются и по конструкции и по эксплуатационным свойствам: индукционные установки с сердечником и без сердечника.

По технологическому назначению установки индукционного нагрева подразделяют на плавильные печи для плавки металлов и нагревательные установки для термической обработки (закалки, отпуска), для сквозного нагрева заготовок перед пластической деформацией (ковкой, штамповкой), для сварки, пайки и наплавки, для химико-термической обработки изделий и т. д.

По частоте изменения тока, питающего установку индукционного нагрева, различают:
1) установки промышленной частоты (50 Гц), питающиеся от сети непосредственно или через понижающие трансформаторы;
2) установки повышенной частоты (500-10000 Гц), получающие питание от электромашинных или полупроводниковых преобразователей частоты;
3) высокочастотные установки (66 000-440 000 Гц и выше), питающиеся от ламповых электронных генераторов.

Установки индукционного нагрева с сердечником

В плавильной печи (рис. 1) цилиндрический многовитковый индуктор, изготовленный из медной профилированной трубки, насаживают на замкнутый сердечник, набранный из листовой электротехнической стали (толщина листов 0,5 мм). Вокруг индуктора размещают огнеупорную керамическую футеровку с узким кольцевым каналом (горизонтальным или вертикальным), где находится жидкий металл. Необходимым условием работы является замкнутое электропроводное кольцо. Поэтому невозможно расплавить отдельные куски твердого металла в такой печи. Для пуска печи приходится в канал заливать порцию жидкого металла из другой печи или оставлять часть жидкого металла от предыдущей плавки (остаточная емкость печи).

Рис.1. Схема устройства индукционной канальной печи: 1 - индикатор; 2 - металл; 3 - канал; 4 - магнитопровод; Ф - основной магнитный поток; Ф 1р и Ф 2р - магнитные потоки рассеяния; U 1 и I 1 - напряжение и ток в цепи индуктора; I 2 - ток проводимости в металле

В стальном магнитопроводе индукционной канальной печи замыкается большой рабочий магнитный поток и лишь небольшая часть полного магнитного потока, создаваемого индуктором, замыкается через воздух в виде потока рассеяния. Поэтому такие печи успешно работают на промышленной частоте (50 Гц).

В настоящее время существует большое число типов и конструкций таких печей, разработанных во ВНИИЭТО (однофазные и многофазные с одним и несколькими каналами, с вертикальным и горизонтальным закрытым каналом разной формы). Эти печи применяют для плавки цветных металлов и сплавов со сравнительно низкой температурой плавления, а также для получения высококачественного чугуна. При плавке чугуна печь используют либо в качестве копильника (миксера), либо в качестве плавильного агрегата. Конструкции и технические характеристики современных индукционных канальных печей приведены в специальной литературе.

Установки индукционного нагрева без сердечника

В плавильной печи (рис. 2) расплавляемый металл находится в керамическом тигле, помещенном внутрь цилиндрического многовиткового индуктора. изготовляют из медной профилированной трубки, через которую пропускают охлаждающую воду. Узнать подробнее о конструкции индуктора можно .

Отсутствие стального сердечника приводит к резкому увеличению магнитного потока рассеяния; число магнитных силовых линий, сцепляемых с металлом в тигле, будет крайне мало. Это обстоятельство требует соответствующего увеличения частоты изменения (во времени) электромагнитного поля. Поэтому для эффективной работы индукционных тигельных печей приходится питать их токами повышенной, а в отдельных случаях и высокой частоты от соответствующих преобразователей тока. Подобные печи имеют очень низкий естественный коэффициент мощности (cos φ=0,03-0,10). Поэтому необходимо применять конденсаторы для компенсации реактивной (индуктивной) мощности.

В настоящее время имеется несколько типов индукционных тигельных печей, разработанных во ВНИИЭТО в виде соответствующих размерных рядов (по емкости) высокой, повышенной и промышленной частоты, для плавки стали (тип ИСТ).


Рис. 2. Схема устройства индукционной тигельной печи: 1 - индуктор; 2 - металл; 3 - тигель (стрелками показана траектория циркуляции жидкого металла в результате электродинамических явлений)

Преимуществами тигельных печей являются следующие: выделяющееся непосредственно в металле тепло, высокая равномерность металла по химическому составу и температуре, отсутствие источников загрязнения металла (помимо футеровки тигля), удобство управления и регулирования процесса плавки, гигиеничность условий труда. Кроме этого, для индукционных тигельных печей характерны: более высокая производительность вследствие высоких удельных (на единицу емкости) мощностей нагрева; возможность плавить твердую шихту, не оставляя металл от предыдущей плавки (в отличие от канальных печей); малая масса футеровки по сравнению с массой металла, что уменьшает аккумуляцию тепловой энергии в футеровке тигля, снижает тепловую инерцию печи и делает плавильные печи этого типа исключительно удобными для периодической работы с перерывами между плавками, в частности для фасонно-литейных цехов машиностроительных заводов; компактность печи, что позволяет достаточно просто изолировать рабочее пространство от окружающей среды и осуществлять плавку в вакууме или в газовой среде заданного состава. Поэтому в металлургии широко применяют вакуумные индукционные тигельные печи (тип ИСВ).

Наряду с преимуществами у индукционных тигельных печей имеются следующие недостатки: наличие относительно холодных шлаков (температура шлака меньше температуры металла), затрудняющих проведение рафинировочных процессов при выплавке качественных сталей; сложное и дорогое электрооборудование; низкая стойкость футеровки при резких колебаниях температуры вследствие небольшой тепловой инерции футеровки тигля и размывающего действия жидкого металла при электродинамических явлениях. Поэтому такие печи применяют для переплава легированных отходов с целью снижения угара элементов.

Использованная литература:
1. Егоров А.В., Моржин А.Ф. Электрические печи (для производства сталей). М.: «Металлургия», 1975, 352 с.

Вакуумная печь — это устройство, которое в первую очередь предназначено для образования внутри системы высокой температуры. Проделывается весь этот путь, для того, чтобы достичь оптимальных условий для плавки металла в вакууме с помощью энергии электрической дуги.

Навигация:

Если говорить о том, где задействуются подобные устройства, то на данный момент вакуумные печи нашли свое применение во многих отраслях производства, где они играют одни из самых важных ролей. К примеру, вакуумные печи нашли свое применение в таких отраслях, как:

  • Ракетостроение
  • Космическая промышленность
  • Атомная энергетика
  • Металлургия

Все эти отрасли требуют качественной выплавки высококачественных сталей, которые смогут выдерживать самые трудные погодные условия. А без участия вакуумных печей, достичь подобной кондиции попросту невозможно.

Также можно рассмотреть главные преимущества вакуумной печи, которых на самом деле огромное количество. Пройдя через вакуумную печь, в сплаве остается минимальное содержание газов и неметаллических веществ.

Благодаря качественной конструкции вакуумных печей, а именно отдельных её элементов, удалось достичь максимальной прочности агрегата. Этот фактор позволяет достигать внутри системы максимальных температур, вплоть до 2000 градусов. При этом, сплавы являются действительно очень качественными и не содержат в себе каких-то нежеланных элементов. А сами печи, вне зависимости от ценовой категории никаким образом не портятся и остаются все такими же эффективными.

Но стоит отметить тот факт, что вакуумная печь, цена которой довольно высока — это не такой часто встречаемый продукт, и купить подобный агрегат будет весьма проблематично.

Дуговая печь

В отличие от обычной вакуумной печи, дуговая печь работает по мене запутанному алгоритму, но результаты, которые она предоставляет, ничем не уступают обычной версии вакуумной печи. Но стоит напомнить, что у этих печей абсолютно разное предназначение и каждая из них выполняет собственные задачи.

Дуговая печь работает за счет теплового эффекта электрической дуги, который приводит в действие весь механизм. Главная задача этого агрегата — это плавка металла, но кроме него, печь в силах справится и с другими материалами, и показывает себя в этом только с лучшей стороны.

Дуговые печи имеют три версии сборки, из-за чего их и разделили на три отдельных категории.

  • Печи прямого нагрева — электрическая дуга находится посредине двух электродов и находится под воздействием расплавленных металлов.
  • Печи с закрытой дугой — материал, который поддается нагреву, находится внутри, в полном окружении электродов. Что касается дуги, то в этом устройстве, она разместилась под нагреваемым материалом. С помощью излучения, дуга воздействует на материал внутри системы, придавая ему все условия для быстрой плавки, в то время как электрический ток проходит внутри расплавленного метала
  • Печи косвенного нагрева — Этот тип системы подразумевает более интересный способ работы, так как здесь электрическая дуга, находится в активном режиме только между электродами. Что касается тепла от дуги, то оно поступает посредством излучения.

Индукционная печь

Индукционные печи в плане внешнего вида не особо отличаются от своих собратьев, но что касается технологии работы, то здесь отличия просто кардинальные. В какой-то мере можно сказать, что именно индукционные плавильные печи — это прорыв в отрасли плавки металлов, так как технология плавильной печи устроена таким образом, что нагревается не сам агрегат, а лишь материал который в нем находится, так как электрическая энергия направленна исключительно на материал внутри системы.

Вакуумная индукционная плавильная печь, использует нагрев токами, высочайшей частоты, которые позволяют реализовать возможность создания наибольшей концентрации электрической энергии. Она же в свою очередь, направляется на метал, который находится в плавильной печи. Также большим плюсом является то, что подобная технология позволяет проводить нагрев намного быстрее, чем обычные печи. А это значит, что предприятия, которые используют именно индукционные плавильные печи, имеют возможность значительно увеличить эффективность труда, что принесет дополнительный доход.

Вакуумная термическая печь

Вакуумная термическая печь, как собственно и другие её вариации, также нашла свое применение во многих производственных отраслях и на данный момент используется многими предприятиями. Если говорить о самых известных отраслях, в которых на данный момент термическая печь является важнейшим звеном, то сюда можно отнести такие отрасли, как:

  • Авиационная промышленность
  • Космическая промышленность
  • Машиностроение

Все эти отрасли являются довольно распространёнными в нашей стране, и все они используют в своей работе вакуумную термообработку деталей, без которой они будут попросту не пригодны для работы. После термообработки, любая деталь покрывается небольшим покрытием, которое в будущем и служит надежным защитником от воздействия окружающей среды.

Что касается ценовой категории вакуумных термических печей — то это действительно дорогой агрегат, купить который будет довольно проблематично. Обычному человеку это возможно сделать, если он найдет самую маленькую версию печи подобного типа, которых на рынке не так много. Зачастую вакуумные термические печи используются большими предприятиями, которым требуется устройство, которое сможет давать хорошие показатели работоспособности и при этом работать сутками без остановки.

Водородная печь

Если говорить о наиболее качественной и надежной печи, то без каких-либо сомнений можно сказать, что таковой является водородная печь, имеющая наибольший спектр функций, которые позволяют ей справляться с самыми разными задачами. Не стоит также забывать и о характеристиках подобного агрегата, так как они действительно отличаются от того, что можно увидеть у вакуумных печах других вариаций.

Дополнительные процессы отжига и пайки, позволяют деталям обеспечить по-настоящему качественное соединение. Вакуумные водородные печи, также отличатся абсолютной автоматизацией и не требуют никакой человеческой помощи. Для долгой и качественной работы, надо лишь правильно настроить агрегат, после чего он будет выполнять все в точности с заданными параметрами.

Водородные печи выпускаются в самых различных вариациях в точном числе и в плане габаритов есть самые разные модели. А это значит, что человек, который хочет себе подобное устройство, имея нужную сумму денег, может без каких-либо преград купить себе подобный агрегат. Но все-таки намного чаще он используется на различных производствах, где он выполняет одну из важнейших функций.

По сути, сравнивать все эти печи – это довольно странная затея, так как все они имеют свое предназначение и выполняют отдельные функции. Но все-таки, если сравнивать их в плане производительности, то лучше всего себя показывает именно вакуумная водородная печь, демонстрируя отличное качество и скорость работы, которая значительно выше, чем у других печей вакуумного типа.

Отправить запрос

Производство и поставка вакуумных индукционных печей по России и странам СНГ

В настоящее время спрос на сталь и сплавы особого назначения для аэрокосмической, авиационной, атомной и энергетической промышленности стремительно растёт. В этих сферах промышленности зачастую требуются всё более высокие значения по прочности, чистоте и другим свойствам металла.

Для того, чтобы решить задачу по повышению качественных свойств выплавляемых металлов, компания “МетаКуб” готова предложить технологии, основанные на инновационных способах выплавки, для получения стали и сплавов с особыми технологическими свойствами. К таким способам относится вакуумная индукционная плавка.

Необходимость в создании вакуумных индукционных печей возникла в связи с необходимостью внедрения в промышленное производство высокореакционных и тугоплавких металлов, таких как: цирконий, титан, ниобий, бериллий и молибден, а также тантал, вольфрам, уран и ряд других. Особенностью таких металлов является то, что они интенсивно окисляются при нагреве на воздухе, и поэтому плавку необходимо вести в вакууме.

Особенности вакуумных индукционных печей

Технология вакуумной индукционной плавки позволяет получать высокоочищенные металлы в бескислородной атмосфере. При использовании вакуумных индукционных печей можно получить жаропрочные и высоколегированные стали, прецизионные сплавы. Также в вакуумных индукционных печах можно проводить термообработку и плавление драгоценных и редкоземельных металлов, а также варку высокосортного спецстекла и использовать их для получения монокристаллов. Во всех случаях получаемый материал на вакуумных печах отличается повышенной чистотой и минимальным угаром.

Большую роль при рафинации в вакуумной индукционной печи играет процесс испарения легкоплавких примесей - свинца, мышьяка, олова и висмута. Высокие качества вакуумного металла отчасти обеспечены очищением сплава от этих примесей, содержащихся в очень малых количествах, что становится невозможным определить их даже совершенными методами анализа. Это необходимо, когда требования к материалу достаточно высоки и полученный спецсплав должен отвечать определенным свойствам.

Также достоинством вакуумных печей является способность получать монокристаллические и мелкозернистые структуры металлов. При этом свойства получаемого материала можно прогнозировать.

Модель Объем печи, кг Мощность, кВт Частота, кГц Предельный холодный вакуум, Па Расход воды на охлаждение, м 3 /час Напряжение питающей сети, В
ВПИ-10 10 50 2,5 6.67×10-3 5 380
ВПИ-25 25 100 2,5 6.67×10-3 5 380
ВПИ-50 50 100 2,5 6.67×10-3 7 380
ВПИ-150 150 100 2,5 6.67×10-3 13 380

Рабочая температура печей - до 2200-- градусов.

  • Возможность длительной выдержки жидкого металла в глубоком вакууме;
  • Высокая степень дегазации металлов;
  • Возможность производить дозагрузку печи в процессе плавки;
  • Возможность активного воздействия на интенсификацию процессов раскисления и рафинирования в любой момент плавки;
  • Возможность эффективного контроля и регулирования состояния расплава по его температуре и химическому составу в течение всего процесса;
  • Особая чистота получаемых отливок за счет отсутствия любых неметаллических включений;
  • Возможность производить быстрый нагрев (прямой нагрев за счет тепла выделяемого в расплаве) за счет чего увеличивается производительность;
  • Высокая гомогенность расплава за счет активного перемешивания металла;
  • Произвольная форма сырья (кусковые материалы, брикеты, порошок и т.д.)
  • Высокая экономичность и экологическая чистота.

Конструкция вакуумных печей


представляет собой высокочастотную печь из огнеупорного тигля, помещенную внутри индуктора, который в свою очередь располагается внутри герметичного корпуса, из которого вакуумными насосами выкачиваются газы. Тигель вакуумных печей производят из порошкообразных высокоогнеупорных материалов набивкой в индукторе по шаблону. Вакуумные индукционные печи являются механизированными агрегатами. Розлив металла может происходить либо поворотом печи внутри камеры, либо поворотом самой камеры в целом. Вакуумная индукционная плавильная печь позволяет независимо выполнять следующие операции: регулировать температуру расплава, изменять давлении внутри камеры, производить перемешивание расплава, а также добавлять другие элементы в расплав.

Модульный принцип построения вакуумных печей позволяет достигать повышенную компактность печи, а также возможность присоединения дополнительных модулей - камеру разгрузки, разливки, а также съема получаемых изделий.

Конструкция современных вакуумных индукционных печей позволяет устанавливать изложницы и выгружать из них слитки без нарушения вакуума в печи. Вакуумные индукционные печи чаще всего являются автоматизированными устройствами. Загрузка шихты, введение добавок и присадок, разливка металла осуществляются с использованием электрического или гидравлического привода.

Купить вакуумную индукционную печь по низкой цене - Компания “МетаКуб”

Компания “МетаКуб” готова предложить Вам широкий выбор вакуумных индукционных печей по низким ценам с поставкой и вводом в эксплуатацию по России и странам СНГ. Наша компания имеет огромный опыт поставки различного металлургического оборудования на предприятия России, Казахстана, Беларуси и других стран СНГ.