Обработка металлов

Типы и конструктивные особенности турбобуров. Принцип работы турбобура

В июне нынешнего года исполняется 120 лет изобретению, которое еще на рубеже XIX-XX веков при благоприятном стечении обстоятельств могло обеспечить российской нефтяной промышленности мощный технологический рывок. В 1895 году департамент торговли и промышленности Министерства финансов выдал инженеру-технологу Кузьме Симченко привилегию № 5892 «на систему бурения кругловращательными машинами», где основу составлял ротационный гидравлический забойный двигатель. Однако внедрение этой инновационной идеи в буровое дело последовало только через несколько десятилетий — и уже в рамках нового государства, Советского Союза

Роторный гамбит

Внедрение технологии механического роторного бурения, при котором вращение долота вместе со всей колонной бурильных труб осуществлялось станком с поверхности, стало одним из знаковых событий на этапе промышленного переворота в нефтяной промышленности в начале ХХ века. До этого наиболее распространенным методом был ударно-канатный. Впервые новую технологию применили американские бурильщики на нефтяных промыслах Техаса в 1901 году, а его производительность удалось существенно повысить после изобретения спустя семь лет (также в Штатах) шарошечного долота.

В России впервые роторное бурение было применено на Апшеронском полуострове в 1911 году, когда подрядчик фон Габер использовал на промысле в Сураханах два станка производства американской Oil Well Supply Co. Они представляли собой несложные механические устройства, в которых осевое усилие создавалось дифференциально-винтовыми, цепными и рычажными системами от парового двигателя. Высокая производительность нового оборудования произвела впечатление на русских нефтепромышленников, и этому примеру последовали инженеры лидера российской нефтяной промышленности «Товарищества нефтяного производства братьев Нобель», закупившие в США несколько роторных буровых станков, чуть позже к процессу подключились «Каспийско-Черноморское нефтепромышленное и торговое общество», подрядная фирма «Молот» и другие.

В 1913 году на промыслах Апшеронского полуострова работало 20 роторных станков

В 1913 году на промыслах Апшеронского полуострова работало уже 20 роторных станков. Однако вскоре выявились и недостатки этого способа бурения, проявлявшиеся на больших глубинах. Главная проблема — большое отклонение ствола скважины от вертикали, в связи с чем обсадные колонны часто не доходили до проектной глубины. Это заметно приостановило развитие направления.

С установлением советской власти и национализацией отрасли в стране началась реализация госпрограммы технического перевооружения нефтяной промышленности. К 1929 году роторное бурение стало бесспорным лидером: 86,7% применения на Апшеронском полуострове и 73,2% — в Грозненском районе. Буровые станки уже оснащались гидравлической подачей и системами плавного регулирования частоты вращения. Изменения в конструкции оборудования и технологии бурения привели к более чем десятикратному увеличению скорости проходки и снижению себестоимости буровых работ. Однако параллельно с массовым внедрением роторного бурения на советских нефтяных промыслах начались испытания еще более прогрессивного способа бурения скважин, призванного стать открытием новой эпохи в развитии нефтяной промышленности. Ведущая роль в этом процессе принадлежала талантливому российскому инженеру-механику Матвею Капелюшникову.

Турбобур инженера Капелюшникова

Матвей Капелюшников окончил механическое отделение Томского технологического института в 1914 году и был приглашен на работу в британскую компанию «Бакинское общество русской нефти» на Апшеронском полуострове. Уже после национализации нефтяной промышленности, в начале 1922 года инженер Капелюшников был назначен заместителем начальника Технического бюро объединения «Азнефть», и с того времени основным направлением его деятельности стало совершенствование буровой техники. Занявшись исследованием проблем роторного бурения, вскоре он весьма точно определил существенный недостаток этого способа: при значительной длине масса колонны бурильных труб внушительна, и всю эту тяжесть двигатель-ротор, находящийся на поверхности, должен вращать только для того, чтобы сообщить движение небольшому долоту, разрушающему породу на большой глубине. Таким образом, на полезную работу идет лишь малая часть энергии, а большая пропадает бесполезно. Вращаются сами трубы, при этом их наружные стенки истираются от породы, а внутренние повреждаются песком, всегда имеющимся в глинистом буровом растворе, конструкция быстро изнашивается, ломается, скручивается и требует частой замены. Выходом из технологического тупика стала бы разработка надежного и высокопроизводительного забойного двигателя. То есть применение на практике идеи Кузьмы Симченко.

Матвей Алкунович Капелюшников

Советский ученый, специалист в области нефтяной и горной механики, добычи и переработки нефти

Турбобур конструкции Капелюшникова

Напряженная работа инженера Капелюшникова и его помощников Семена Волоха и Николая Корнева принесла необходимый результат: впервые в мировой инженерной практике была успешно решена задача создания работоспособного забойного двигателя — редукторного турбобура. Первая опытная конструкция весила около тонны. В цилиндрическом кожухе помещался двигатель — одноступенчатая турбина, приводимая в движение глинистым раствором, накачиваемым насосом через полости бурильных труб. Она была соединена с долотом через зубчатый редуктор, при помощи которого уменьшалось число оборотов долота.

Первую в мире скважину с использованием нового метода пробурили в 1924 году на Сураханском промысле — ее глубина составила около 600 м. Преимущества турбобура стали очевидны практически сразу: при бурении вращается только долото, а тяжелая колонна труб лишь перемещается вдоль скважины по мере ее углубления. Что, соответственно, значительно сокращает количество аварий, особенно при работе на больших глубинах. Сообщение о выдаче патента «на изобретение гидравлического аппарата для бурения скважин вращательным способом при неподвижных трубах» на имя инженера Матвея Капелюшникова было опубликовано в центральной печати 31 августа 1925 года с указанием, что действие патента распространялось от 15 сентября 1924 года на 15 лет.

Изобретение турбобура в СССР вскоре привлекло пристальное внимание иностранного инженерного сообщества. В 1928 году американский журнал Petroleum пригласил Матвея Капелюшникова выступить с докладом о турбобуре на Международной выставке нефтяного оборудования в Талсе (штат Оклахома). В то же время крупные нефтяные компании Standard Oil Company of New York и Texaco Inc. обратились к руководству советской внешнеторговой организации «Амторг» с просьбой продемонстрировать работу турбобура Капелюшникова на американских нефтяных промыслах. Пожелание заокеанских коллег было удовлетворено, и в США отправилась советская буровая бригада во главе с инженером Капелюшниковым и с двумя турбобурами редукторного типа. Показательное турбинное бурение скважины прошло недалеко от городка Эрлсборо, на промысле компании Texas Oil Co. В одних и тех же условиях, на глубине около 700 м, при подаче глинистого раствора 16,5 л в секунду турбобур показал скорость бурения на 60% выше, чем роторный станок, потребляя втрое меньше энергии.

Результаты работы буровой бригады инженера Капелюшникова на американских нефтяных промыслах произвели большое впечатление на мировое деловое и инженерное сообщество, и вскоре ряд зарубежных фирм предложил советским торговым представителям и непосредственно Матвею Капелюшникову продать лицензию на турбобур. Однако советское правительство предпочло самостоятельно совершенствовать технологию, оставляя за собой право исключительного пользования. Правда, вскоре работа зашла в тупик.

Шумиловский прорыв

Главным недостатком турбобура конструкции Капелюшникова было ограничение эффективной работоспособности оборудования всего несколькими часами, и средняя коммерческая скорость турбинного бурения значительно отставала от роторного бурения в тех же условиях. Высокая скорость течения бурового раствора между лопатками турбины вызывала интенсивный эрозионный износ ее проточной части. Низкой была и долговечность маслонаполненного зубчатого редуктора. Его трущиеся части от большого удельного давления и попадания глинистого раствора в картер двигателя сильно изнашивались, и их приходилось менять очень часто. Наработка на отказ турбобура в среднем не превышала 10 часов. Поэтому первый турбобур по основным технико-экономическим показателям все же уступал доминировавшему в то время роторному способу бурения.

Петр Павлович Шумилов

Советский ученый,
ученый-нефтяник, изобретатель, педагог

Успешная проходка скважины в бухте Ильича (Баку) турбинным наклонно-направленным бурением положила начало внедрению наклонного турбобурения

Несовершенство оборудования привело к тому, что к началу 1930-х годов в СССР турбинное бурение стало терять сторонников среди практиков-буровиков и инженеров. Способствовал этому и очевидный прогресс в роторном бурении, которое благодаря применению мощных насосов, модернизации долот РХ («рыбий хвост») с наплавками из твердых сплавов существенно улучшило основные технико-экономические показатели. Изменить положение дел мог только технический прорыв. Этот прорыв обеспечила в первую очередь творческая группа специалистов Государственного исследовательского нефтяного института (ГИНИ) под руководством Петра Шумилова. Выпускника физико-механического факультета МГУ Шумилова сразу после получения им диплома, в 1928 году, на работу в ГИНИ пригласил академик Иван Губкин. Молодой инженер быстро прошел путь от научного сотрудника до заведующего отделом промысловой механики. В начале 30-х годов ХХ века Петр Шумилов принял активное участие в написании первого полного курса нефтяной гидравлики, который на долгие годы стал базовым учебником для специалистов-нефтяников. В этот же период он занялся главным делом жизни — созданием многоступенчатого турбобура.

Проанализировав работу турбобура Капелюшникова, Петр Шумилов пришел к принципиально новому в нефтяном машиностроении решению — применению многоступенчатой аксиальной турбины. На основании оригинальных теоретических исследований ученый разработал основные принципы теории безредукторного турбобура с многоступенчатой осевой гидравлической турбиной. Результаты этой работы стали основанием для создания в Баку «Экспериментальной конторы турбинного бурения» (ЭКТБ) во главе с самим автором новых подходов.

Реализацию концепции турбинного бурения Петр Шумилов видел в обеспечении максимальной мощности на долоте — забое. Итогом масштабной работы стала разработка конструкции многоступенчатого безредукторного турбобура Т6-150, первое испытание которого состоялось в 1935 году на Апшеронском полуострове на нефтепромысле имени Кагановича. Идеальной конструкция сразу не получилась: например, не была решена проблема надежности бурового долота на повышенных частотах вращения, необходимо было также решить ряд технологических задач, связанных и с режимами бурения, и с промышленным производством турбобура.

1. Проходка с морского основания
2. Разбуривание морского нефтяного месторождения с берега
3. Отклонение ствола скважины от сбросовой зоны (зоны разрыва) по направлению к нефтеносному участку
4. Проходка наклонной скважины, когда забой будет расположен под учаском, недоступным для монтажа буровой установки
5. Бурение на нефтяные пласты моноклинального типа
6. Бурение вспомогательной наклонной скважины для ликвидации пожара или открытого фонтана
7. Уход в сторону при аварии
8. Проходка наклонных скважин в районе замывания соляного купола
н нефть; в вода; г газ; с соль

В 1940 году коллектив ЭКТБ создал опытный образец турбобура Т10-100 с новой многоступенчатой турбиной, оснащенной одноярусным редуктором усиленного типа, обеспечивающим необходимое для бурения число оборотов непосредственно на валу. К началу Великой Отечественной войны турбобурами ЭКТБ было пробурено несколько опытных скважин на промыслах Азербайджана, Башкирии, Бугуруслана, что позволило найти технические решения, существенно повышающие надежность оборудования, оптимизирующие технологии его изготовления.

Пермский машиностроительный завод в 1950-е был одним из центров серийного производства турбобуров

В 1942 году Петру Шумилову и трем его соратникам была присуждена Сталинская премия «за изобретение многоступенчатой гидравлической турбины для бурения глубоких скважин». Этот год стал последним годом жизни ученого — он погиб на полигоне во время испытания нового типа противотанкового оружия. В 1943 году вышло посмертное издание Петра Шумилова «Теоретические основы турбинного бурения», по существу, подтвердившее наступление нового этапа становления турбинного бурения — теперь уже как самостоятельной области знания со своей научной базой, принципами конструирования, специфическими задачами и возможностями.

Дело Петра Шумилова достойно продолжили специалисты «Экспериментальной конторы турбинного бурения». В годы Великой Отечественной войны ЭКТБ было эвакуировано из Баку в Молотовскую (Пермскую) область. Здесь и произошло важное событие в истории отечественного бурового дела. На Краснокамском нефтяном месторождении под руководством главного инженера конторы Степана Аликина была разработана и успешно внедрена в производство технология наклонно-направленного турбинного бурения. Сложность бурения наклонных скважин на месторождении определялась необходимостью получать отклонение забоя на 400 м и более при глубинах скважин около 1 тыс. м, причем максимальная кривизна ствола пробуренных скважин должна была составлять 32-34°. В 1943 году 90% всех скважин в Прикамье были пробурены наклонно-направленным способом, что позволило уже в первом квартале года увеличить добычу нефти на 31%, повысить интенсивность бурения на 40%, производительность труда — на 24%. Успешный опыт наклонно-направленного турбинного бурения дал возможность пермским нефтяникам впервые в мире начать промышленное внедрение кустового бурения. При этом методе на одной площадке бурилось несколько наклонных скважин, забои которых направлялись в разные точки нефтяного пласта. Убедительный пример пермских нефтяников положил начало активному применению наклонно-направленного бурения в других районах «Второго Баку», что также решало и одну из серьезнейших проблем, замедлявших нефтедобычу в стране, — дефицита обсадных труб.

На месторождениях «Второго Баку»

После окончания войны в процессе создания новой топливно-энергетической базы страны — «Второго Баку», — Татарская и Башкирская АССР, Куйбышевская и Пермская области стали районами массового применения турбинного бурения, одновременно с которым активно проводились мероприятия по форсированию режима работы. Все это позволило увеличить коммерческую и механическую скорости проходки в 4-5 раз и за 15 лет (с 1945-го по 1960-й) объем буровых работ в стране вырос с 927 тыс. м до 6,7 млн м. За это время доля турбинного бурения выросла с 23% до 87%. Локомотивом процесса развития технологии стал Всесоюзный научно-исследовательский и проектный институт по бурению нефтяных и газовых скважин (ВНИИбурнефть), созданный 28 февраля 1953 года. С первых дней своего образования ВНИИбурнефть активно включился в освоение новых месторождений Волго-Уральской нефтегазовой провинции. Новым достижением ученых стало создание секционного турбобура ТС-1, состоящего из нескольких самостоятельных корпусов и валов с насаженными на них турбинами. Корпуса секций соединялись между собой при помощи замковой резьбы. Валы секции были взаимно связаны конусными фрикционными муфтами, что позволяло полностью передать гидравлическую нагрузку верхнего ротора на пяту нижней турбины. Испытания турбобура на месторождениях в Башкирской АССР продемонстрировали рост механической скорости бурения на 20% почти при той же проходке на долото. Причем в связи с уменьшением количества прокачиваемой жидкости энергетические затраты на 1 м проходки снижались до 40%.

Для бурения скважин малого диаметра в институте ВНИИбурнефть были спроектированы и изготовлены малогабаритные трехсекционные турбобуры ТС4. К этому же периоду относится разработка коротких турбобуров Т122М2К для направленного бурения, преимущества которых быстро оценили нефтяники.

В 1957 году ВНИИБУРнефть был переименован во Всесоюзный научно-исследовательский институт буровой техники (ВНИИБТ), в институте появились два крупных научно-конструкторских подразделения — «Отдел турбобуров» и «Лаборатория высокомоментных турбобуров». Опытные образцы новых турбобуров изготавливались на «Экспериментальном заводе ВНИИБТ» в подмосковных Люберцах и «Опытном заводе ВНИИБТ» в Котово Волгоградской области. Серийным производством турбобуров, в свою очередь, занимались Кунгурский, Пермский и Павловский машиностроительные заводы в Пермской области. Качество, надежность и высокую производительность советских турбобуров по достоинству оценило и международное сообщество буровиков. В 1958 году на Брюссельской международной выставке турбобур ТС4-5 был удостоен серебряной медали. Вскоре лицензии на изготовление и применение нескольких типов турбобуров были проданы в США, Канаду, Великобританию, Францию, ФРГ, Бельгию, Японию.

В Сибирь

В начале 1960-х годов началось создание новой топливно-энергетической базы Советского Союза в Западной Сибири. Уже к 1970 году на территории Тюменской области было открыто более 80 нефтяных, газовых и нефтегазовых месторождений. Среди них были и крупнейшие в мире: Самотлорское, Федоровское, Мамонтовское нефтяные месторождения, и Уренгойское, Медвежье, Заполярное — газовые. В крайне тяжелых природных и климатических условиях региона работать обычными методами было крайне сложно, а порой и невозможно. Начался поиск качественно новых подходов к эксплуатации техники, технологии, организации производства. Значимое место в этом процессе заняло и турбинное бурение. Например, в 1970 году бригада бурового мастера Михаила Сергеева, применяя форсированный режим при турбинном бурении, пробурила эксплуатационную скважину глубиной 1500 м с коммерческой скоростью 20 081 м/ст. — мес., что превысило средний показатель по Главтюменнефтегазу почти в семь раз.

14 апреля 1971 году в Западной Сибири впервые в стране было создано специализированное буровое объединение «ЗапСиббурнефть», что дало новый импульс развитию нефтедобычи в регионе. В числе основных направлений работы предприятия значилось и внедрение горизонтального и разветвтленно-горизонтального бурения с использованием турбобуров.

К этому времени в ВНИИБТ впервые в мире был разработан и испытан винтовой забойный двигатель, в котором в качестве рабочих органов был использован многозаходный винтовой героторный механизм. Свое применение в Западной Сибири и в других регионах нашли и секционные шпиндельные турбобуры 3ТСШ. Важная особенность их конструкции — принцип унификации, предусматривающий возможность использования в турбобуре турбин и опор любого типа соответствующего габаритного размера. Кроме того, в ВНИИБТ были разработаны турбобуры с высоколитражными турбинами точного литья 3ТСШ1-195 ТЛ, которые стали основным техническим средством, позволившим в СССР достичь наивысших скоростных показателей бурения скважин.

В 1980-е годы совершенствование техники и технологии турбинного бурения привело к появлению ряда новых направлений в конструировании турбобуров и соответствующих им технических средств. В целом к началу 90-х годов ХХ века в СССР с помощью турбинного бурения проходилось более 32 млн м скважин в год. Да и сейчас в России более 75% объема бурения ведется именно турбобуром.

Турбобур представляет собой весьма интересный по своей конструкции и принципу действия вид оборудования для бурения скважин. Турбобуром именуется , конструкция которого позволяет преобразовать механическую энергию для вращения породоразрушающего инструмента из энергии потока промывочного раствора. Подобное преобразование осуществляется за счет многоступенчатой турбины.

Такая конструкция позволяет более эффективно передавать мощность источника энергии к породоразрушающему инструменту и снижает показатель износа труб в разы по сравнению с роторным типом бурения скважин.

На сегодняшний день существуют различные типы турбобуров, которые отличаются по конструкции и количеству расходуемой жидкости и другим параметрам.

Так, в зависимости от типа конструкции различают: одно- и многосекционные изделия. В первом случае опорная пята и турбина заключены в едином корпусе устройства, в то время как в многосекционном, как следует из самого названия этого типа турбобуров, используется несколько турбинных секций и шпиндель. С любым из этих типов турбобуров возможно использовать унифицированную шпиндельную секцию – самостоятельное устройство, которое в зависимости от конкретной модели может быть выполнено как на опоре скольжения, так и на подшипнике качения.

Типы турбобуров также можно выделить на основе показателя литража устройства. Низкий литраж в сочетании с высоким показателем напора отличаются наибольшим показателем мощности, большим показателем частоты вращения и весьма высокий вращательный момент. Средний литраж устройства демонстрирует высокий расход жидкости, однако при этом частота вращения остается средней, а вращающей момент достигает наиболее высоких возможных показателей. Типы турбобуров с высоким литражом наоборот демонстрируют низкую частоту вращения и при этом – большой расход промывочной жидкости.

В качестве отдельного типа турбобуров можно выделить реактивно-турбинный, применяемый для бурения скважин диаметром до пяти метров. Подобное устройство состоит из нескольких параллельно смонтированных и жестко скрепленных между собой турбобуров. При этом происходит вращение как всей конструкции вокруг оси колонны, так и вращение долот вокруг оси ствола и оси корпуса турбобура.

В качестве одного из типов турбобуров иногда рассматривается турбодолото, которое, хотя и имеет схожую конструкцию, несколько отличается от турбобура. Как правило, это турбобур с одной или двумя секциями, пустотелым валом и грунтоносом в верхней части корпуса. Бурение с применением турбодолота осуществляется при необходимости проведения отбора керна.

1. Турбобуры. Назначение, типы, конструктивные особенности.

В турбинном бурении наибольший крутящий момент обусловлен только сопротивлением породы вращению долота (труб и механизмов между долотом и турбобуром в случае их установки). Максимальный крутящий момент в трубах, определяемый расчетом турбины (значением её тормозного момента) не зависит от глубины скважины, скорости вращения долота, осевой нагрузки на долото и механических свойств проходимых горных пород.

Практика применения турбобуров показывает, что стойкость труб при этом способе бурения примерно в 10 раз превышает стойкость труб в роторном бурении. В турбинном бурении коэффициент передачи мощности от источника энергии к долоту значительно выше, чем в роторном.

Современный турбобур должен обеспечивать следующие характеристики и функции:

1. Достаточный крутящих момент при удельных расходах жидкости не более 0,07 л/с на 1 см² площади забоя.

2. Устойчивую работу при частотах вращения менее 7 с

для шарошечных и 7 – 10 с для алмазных долот.

3. Максимально возможный КПД.

4. обеспечение перепада давления на долоте не менее 7 МПа.

5. Наработку на отказ не менее 300 ч.

6. Долговечность не менее 2000 ч.

7. Постоянство энергетической характеристики по меньшей мере до наработки на отказ.

8. Независимость энергетической характеристики от давления и температуры окружающей среды.

9. Возможность изменения реологических свойств бурового раствора в процессе долбления.

10. Возможность введения в буровой раствор различных наполнителей и добавок.

11. Возможность осуществления промывки ствола скважины без вращения долота.

12. Возможность проведения замеров траектории ствола скважины в любой точке вплоть до долота без подъема бурильной колонны.

13. Стопорение выходного вала с корпусом в случае необходимости и освобождение от стопорения.

14. Гашение вибраций бурильного инструмента

15. Экономию проведённых затрат на 1 м проходки скважины по сравнению с альтернативными способами и средствами бурения.

В одной конструкции все эти требования воплотить очень сложно. В то же время целесообразно иметь возможно меньшее количество типов турбобуров одинакового диаметра.

В начале 50-х годов в связи с возрастанием глубин скважин стали стремиться к увеличению числа ступеней турбины для снижения частот вращения долот. Появились секционные турбобуры, состоящие из двух-трёх секций, собираемых непосредственно на буровой. Секции свинчивались с помощью конической резьбы, а их валы соединялись сначала конусными, а затем конусно-шлицевыми муфтами. Осевая опора секционного турбобура устанавливалась в нижней секции.

В дальнейшем с целью упрощения эксплуатации турбобуров осевая опора была вынесена в отдельную секцию – шпиндель. Это усовершенствование позволило производить смену на буровой наиболее быстроизнашиваемого узла турбобура – его опоры.

Резинометаллическая пята, хорошо работающая при использовании в качестве бурового раствора воды или буровых (глинистых) растворов с относительно низким содержанием твердой фазы, а также при невысоких значениях перепада давления на долоте, в случае применения утяжеленных или сильно загрязненных буровых растворов существенно искажала выходную характеристику турбобура, что снижало эффективность способа бурения, поэтому в конце 50-х годов были начаты интенсивные исследования по разработке опоры качения турбобура.

Дальнейшее совершенствование конструкций турбобура связано с появлением новых высокопроизводительных шарошечных долот с герметизированными маслонаполненными опорами. Для эффективной отработки этих долот требуются частоты вращения приблизительно 2,5 – 5 с

, что привело к созданию ряда новых направлений в конструировании турбобуров:

· с системой гидродинамического торможения;

· многосекционных;

· с высокоциркулятивной турбиной и клапаном-регулятором расхода бурового раствора;

· с системой демпфирования вибраций;

· с разделенным потоком жидкости и полым валом;

· с плавающей системой статора;

· с тормозной приставкой гидромеханического типа;

· с редукторной приставкой.

Появились также гидравлические забойные двигатели объемного типа – винтовые.

Секционные унифицированные шпиндельные турбобуры

Секционные унифицированные шпиндельные турбобуры типа 3ТСШ! Предназначены для бурения скважин шарошечными и алмазными долотами. Состоят из трех турбинных и одной шпиндельной секции. В шпинделе установлена непроточная резинометаллическая осевая опора, которая выполняет также функцию уплотнения вала турбобура.

В каждой турбинной секции размещено около 100 ступеней турбины, по четыре радиальные опоры и по три ступени предохранительной осевой пяты. Последняя применяется для устранения опасности соприкосновения роторов и статоров турбины из-за износа шпиндельного подшипника в процессе работы.

Высокомоментные турбобуры с системой гидроторможения

Высокомоментные турбобуры типа АГТШ с системой гидродинамического торможения предназначены для бурения глубоких скважин шарошечными долотами, но могут применяться и при алмазном бурении.

Состоят из трех секций и шпинделя. Две турбинные секции содержат многоступенчатую высокоциркулятивную турбину. В третьей устанавливаются ступени гидродинамического торможения (ГТ). Ступени ГТ состоят из статора и ротора, лопатки венцов которых имеют безударное обтекание жидкостью на тормозном режиме. При вращении такого ротора возникает крутящий момент, противоположный моменту, развиваемому турбиной турбобура. Значение тормозящего момента пропорционально частоте вращения вала.

В шпинделе турбобура установлен упорно-радиальный шарикоподшипник серии 128 000. в качестве уплотнения вала используются круглые резиновые кольца ПРУ.

Многосекционные турбобуры

С целью снижения частоты вращения долота и наращивания крутящего момента на валу турбобура применяются многосекционные (свыше трех секций) турбинные сборки. Серийные турбобуры, собранные из пяти-шести турбинных секций, позволяют эффективно отрабатывать высокопроизводительные долота при пониженных расходах бурового раствора, а также предоставляют технологам значительно более широкие возможности для выбора оптимальных параметров режима бурения.

По своей конструктивной схеме многосекционный турбобур не отличается от серийного. Однако увеличение числа турбинных секций предъявляет более высокие требования к надежности работы шпинделя турбобура: он должен быть более надежным и более долговечным, чем шпиндели серийных турбобуров. Этим требованиям отвечают шпиндели с лабиринтным дисковым уплотнением типа ШФД. Их долговечность составляет 2000-4000 ч.

Формирование энергетической характеристики многосекционного турбобура может осуществляться несколькими путями: использованием разных типов турбин, их сочетанием со ступенчатыми ГТ, а также регулированием расхода бурового раствора через турбину.

Турбобур с независимой подвеской

Увеличение числа секций турбобура позволяет сформировать оптимальную энергетическую характеристику для бурения шарошечными долотами с герметизированными маслонаполненными опорами и алмазными породоразрушающими инструментами. Этот путь представляется наиболее простым и надежным, однако требует более квалифицированного подхода к сборке и регулировке турбинных секций. Для упрощения этих операций и взаимозаменяемости секций разработана конструкция турбобура с независимой подвеской.

Каждая турбинная секция с независимой подвеской имеет свой упорный шарикоподшипник. Корпусы секций соединяются между собой с помощью конической резьбы, а валы – квадратными полумуфтами и могут свободно перемещаться в осевом направлении. В результате такой компоновки секций износ упорного подшипника шпинделя не влияет на осевой зазор между статором и ротором турбины. Последний определяется только износом подшипников, установленных в турбинных секциях. Поскольку осевая нагрузка на эти секции действует только с одной стороны и практически не имеет динамической составляющей, то этот износ легко прогнозируется. При сборке ротор турбины устанавливается в крайнее верхнее положение относительно статора, что позволяет увеличить время работы упорного подшипника секции. По данным промысловых испытаний диапазон наработки турбинной секции на отказ составляет 120-350 ч.

Упорный подшипник шпинделя работает в тяжелых условиях. Действующая на него реакция забоя скважины переменна по величине и частотам возмущения. Динамические силы приводят к интенсивному износу этого подшипника. Однако допустимый осевой люфт в опоре может составлять около 16-20 мм, поэтому наработка на отказ может быть вполне соизмерима и даже выше, чем у шпинделя обычного типа, но только в тех случаях, когда износ опоры не сопровождается расколом отдельных ее элементов (обоймы, шара).

Турбобур с независимой подвеской может быть собран с турбиной любого типа. В каждой секции можно установить по 80-90 ступеней.

Турбобур с плавающим статором

Турбобуры с плавающим статором обладают теми же преимуществами, что и турбобуры с независимой подвеской секций, однако осевая опора шпинделя имеет повышенную гидравлическую нагрузку.

Их конструкции принципиально отличаются от известных. Каждый статор такого турбобура имеет свободу перемещения в осевом направлении и с помощью шпонки, заходящей в специальный паз корпуса, запирается от проворота под действием собственного реактивного момента. Каждый ротор представляет собой и пяту для соответствующего статора, который не имеет приставочных дистанционных колец.

Так как нагружаемая горная порода забоя скважины практически всегда неоднородна и в каждый момент времени зубья долота находятся в контакте с забоем в разных сочетаниях, то все это приводит к неравномерному разрушению горной породы. При этом возникают колебания с более низкой частотой, но с большей амплитудой, чем при перекатывании шарошки с зуба на зуб. Изменение осевой нагрузки на долото, происходящее вследствие возникновения продольных колебаний, может составлять 25 ч 50 % и более от величины её среднего значения. Продольные (вертикальные) колебания долота с амплитудой, равной 55 мм, являются обычными. Эти колебания приводят к большим динамическим нагрузкам и являются причиной усталостных поломок элементов бурильной колонны. При прочих равных условиях динамичность будет тем меньше, чем больше число лопастей у долота. На возникновение продольных колебаний значительное влияние оказывает неоднородность прочностных свойств горных пород забоя, наличие трещинноватости в породах.

Турбобуры. Принцип их действия и типы турбобуров

При турбинном бурении долото приводится во вращение гидравлическим забойным двигателем - турбобуром, устанавливаемым между долотом и бурильной колонной. Турбобур представляет собой многоступенчатую гидравлическую турбину, к валу которой присоединяется долото. Каждая ступень турбины состоит из статора, жестко соединенного с корпусом турбобура, и ротора, укрепленного на валу турбобура.

В настоящее время применяются одно-, двух-, трех-, четырехсекционные турбобуры с последовательным соединением секций и двух-, трех-, четырехсекционные реактивно-турбинные агрегаты с параллельным соединением секций.

Турбобур - это разновидность бурового оборудования, гидравлический забойный двигатель, в котором гидравлическая энергия потока промывочной жидкости (бурового раствора) преобразуется в механическую энергию вращения вала, соединенного с породоразрушающим инструментом (буровым долотом). Рабочим органом, в котором происходит преобразование энергии, служит многоступенчатая турбина осевого типа.

Принцип действия:

Так как турбобур устанавливают непосредственно над породоразрушающим инструментом, то источником энергии и крутящего момента является давление потока жидкости, движущейся под напором поверхностного насоса.

Поток промывочной жидкости через бурильную колонну подается в первую ступень турбобура. В статоре первой ступени происходит формирование направления потока жидкости, то есть жидкость, пройдя каналы статора, приобретает направление. Таким образом, статор является направляющим аппаратом турбины.

Потоки жидкости из каналов статора поступают на лопатки ротора под заданным углом и осуществляют силовое воздействие на ротор, в результате которого энергия движущейся жидкости создает силы, стремящиеся повернуть ротор, жестко связанный с валом турбины. Поток жидкости из каналов ротора первой ступени поступает на лопатки направляющего аппарата второй ступени, где вновь происходят формирование направления движения потока жидкости и подача её на лопатки ротора второй ступени. На роторе второй ступени также возникает крутящий момент.

В результате жидкость под действием энергии давления, проходит все ступени турбины турбобура и через специальный канал подводится к породоразрушающему инструменту. В многоступенчатых турбобурах крутящие моменты всех ступеней суммируются на валу. В процессе работы турбины на статорах, закрепленных неподвижно в корпусе турбобура, создается реактивный момент, равный по значению, но противоположный по направлению. Реактивный момент через корпус турбобура передается на бурильные трубы и осуществляет их закручивание на определенный угол, зависящий от жесткости и длины бурильной колонны.

  • · Шпиндельные турбобуры (секционные унифицированные) оборудуются шарошечными, либо мощными алмазными долотами. В их состав входят четыре секции: три турбинных (в них размещается около ста турбинных ступеней), и одна шпиндельная.
  • · Высокомоментные турбобуры оснащаются системой гидроторможения, их возможно использовать при алмазном бурении, но в основном они применяются для глубинного бурения шарошечными долотами. В многосекционных турбобурах турбинные сборки включают пять-шесть секций, они отличаются экономичностью бурового раствора при высокой производительности и более широком спектре режимов бурения.
  • · Турбобур, обладающий независимой подвеской, в каждой турбинной секции, имеет шариковый подшипник, секционное соединение происходит за счет конической резьбы, характерна подвижность валов в осевом направлении. Осевой зазор, который образуют статор турбины и турбинный ротор, не подвержен влиянию износа упорного подшипника.
  • · Турбобур, особенностью которого является плавающий статор, не уступает по техническим характеристикам турбобуру, подвеска секций которого независима. Особенность заключается в повышенной нагрузке на осевую опору шпинделя. Турбобур, оборудованный полым валом, применяется для работ в сложных условиях. Оснащаться может как шарошечными, так и алмазными долотами. Используют три секции, при необходимости их число увеличивают до шести. Корпус и полый вал разделяются пространством, которое содержит около ста турбинных ступеней.
  • · Еще один вид турбобура - с редуктором-вставкой. В них эффективно используются долота шарошечного типа, отличительной особенностью является уменьшенный перепад давления.

Турбобур представляет собой забойный гидравлический двигатель с многоступенчатой турбиной. Гидравлическая энергия потока бурового раствора приводит во вращение вал, соединенный с валом шпинделя и долотом. Для различных условий бурения отечественная промышленность выпускает турбобуры, различающиеся по диаметру, числу секций, расположению и конструкции опор и устройству турбинных аппаратов. Унифицированная секция турбобура, применяемая для одно- и многосекционных турбобуров, не имеет осевой опоры, а осевые нагрузки воспринимаются опорой, расположенный в шпиндельной секции.

Унифицированная турбинная секция турбобура ЗТСШ-195 (рис. 4.1.) состоит из переводника 1 , свинченного на конусной резьбе с корпусом 8 , в котором находятся пакеты статоров гидротормоза 7 и турбины 10 , сжимаемые регулировочными кольцами 11 и фиксируемые нижним переводником 12 . Этот переводник снабжен ниппелем с конусной замковой резьбой, к которой присоединяется вторая секция турбобура или шпиндельная секция, а при транспортировке навинчивается колпак.

Вращающаяся группа деталей: регулировочное кольцо 3 втулки уплотнения 4 и распорная 5 , радиальные опоры средняя и верхняя 6 и пакеты роторов гидротормоза 7 и турбины 10 , закрепленные на валу секции 9 стяжной полумуфтой 2 .

В многосекционных турбобурах валы секций соединяются с помощью конусных или шлицевых муфт на резьбах с небольшим углом конусности.

Турбина состоит из большого числа ступеней (до 370). Каждая ступень (рис. 4.2) состоит из статора с наружным 2 и внутренним 3 ободами, между которыми размещены лопатки 4 и ротора, обод 1 которого снабжен лопатками 5 . Лопатки статора и ротора расположены под углом друг к другу, вследствие чего поток жидкости, поступающий под углом из каналов статора на лопатки ротора, меняет свое направление и давит на них. В результате этого создаются силы, стремящиеся повернуть закрепленный на валу ротор в одну сторону, а закрепленный в корпусе статор - в другую.

Далее поток раствора из каналов ротора вновь поступает на лопатки статора второй ниже расположенной ступени, на лопатки ее ротора, где вновь изменяется направление потока раствоpa. На роторе второй ступени также возникает крутящий момент. В результате раствор под действием энергии давления, создаваемой буровым насосом, расположенным на поверхности, проходит все ступени турбобура. В многоступенчатой турбине раствор движется вдоль ее оси. Активный крутящий момент, создаваемый каждым ротором, суммируется на валу, а реактивный (равный по величине и противоположный по направлению), создаваемый на лопатках статора, суммируется на корпусе турбобура.

Реактивный момент через корпус турбобура передается соединенной с ним бурильной колонне, а активный - долоту. На создание крутящего момента перепад давления, срабатываемый в турбобуре, составляет от 3 до 7 МПа, а иногда и более. Это является большим недостатком турбобура, поглощающего значительную часть энергии, создаваемую насосом и затрачивающего ее на вращение долота, а не на очистку и эффективное разрушение забоя скважины, что практически исключает возможность применения гидромониторных долот.

По устройству турбин, требующих различного расхода жидкости, турбобуры подразделяются на: низколитражные, высоконапорные, имеющие максимальную мощность, большую частоту вращения и значительный вращающий момент; среднелитражные, развивающие максимальный вращающий момент, среднюю частоту вращения при высоком расходе жидкости; высоколитражные, имеющие максимальное отношение вращающего момента к частоте вращения М/п , относительно низкую частоту вращения и повышенный расход жидкости.

По числу секций турбобуры подразделяются на односекционные, в которых турбина и опорная пята расположены в одном корпусе, и многосекционные, состоящие из нескольких турбинных секций и шпинделя с осевой опорой.

Унифицированная шпиндельная секция (рис. 4.3) представляет собой самостоятельную сборку, которую можно использовать с одно- и многосекционным турбобуром. Шпиндельная секция выполняется в двух модификациях: на упорном подшипнике качения (рис.4.3, а ) и на резинометаллической опоре скольжения (рис. 4.3, б ).

Все основные детали шпиндельных секций - взаимозаменяемые, что упрощает ремонт и обслуживание. Вал 3 шпинделя в нижней части имеет ниппельную часть с резьбой для присоединения переводника 9 долота. Верхний конец вала 3 снабжен конической резьбой, на которую навинчивается полумуфта 1 , стягивающая регулировочные кольца 4 , втулку радиальной нижней опоры 5 и внутренние кольца упорно-радиального подшипника 7 (рис. 4.3, а) или диски резинометаллической пяты 7.

К недостаткам забойных гидравлических двигателей относится также потребление значительно большего количества жидкости, чем требуется для работы долота. Более 50 лет тому назад П.П. Шумиловым было доказано, что оптимальный процесс бурения осуществляется тогда, когда на забой подается 2/3 мощности, развиваемой буровыми насосами, но эта мощность должна расходоваться долотом на разрушение породы. На привод долота и на гидравлические потери при транспортировке жидкости к забою должно расходоваться не более 1/3 мощности, развиваемой насосами на поверхности. Условия бурения скважин многообразны и единых рекомендаций быть не может, но совершенно ясно, что в каждом случае должно быть дано экономическое обоснование выбора того или иного оборудования для бурения.

4.2.1. Турбодолото

Турбодолото (рис. 4.4) - турбинный забойный двигатель, служащий для вращения колонковой головки для бурения скважин с отбором образцов породы (кернов). Оно представляет собой одно- или двухсекционный турбобур, с резинометаллической осевой опорой и пустотелым валом. Вал турбодолота имеет полость, внутри которой расположена колонковая труба - грунтоноска для приема выбуренного керна. В верхней части корпуса турбодолота помещена опора грунтоноски, имеющая конусное посадочное гнездо. Грунтоноска снабжена головкой с конусной поверхностью, на которую она садится. Благодаря этому при вращении вала турбодолота с бурильной головкой керноприемная труба не вращается.

Грунтоноска закрывает отверстие в валу, благодаря чему жидкость не проходит через него, а поступает в турбину турбодолота. Так как давление раствора в верхней части турбины больше чем в нижней, то под действием этого перепада колонковая труба прижимается к опоре, что препятствует утечке жидкости через зазор между колонковой трубой и отверстием вала. Это могло бы приводить к разрушению выбуренного керна.

В остальном, конструкция турбодолота аналогична турбобуру.

В турбодолотах типа КТДС-4 (рис.4.4) осевая опора расположена в нижней части. Эти турбодолота выпускают с наружным диаметром корпуса 172 и 195 мм, первый - для бурильных головок диаметром 190, а второй - для 214-мм головок.

Техническая характеристика колонковых турбодолот КТД-4

Все турбины турбодолот имеют номинальный расход бурового раствора 0,028 м 3 /с при плотности ρ = 1200 кг/м 3 .

4.2.2. Турбобуры для забуривания наклонных скважин

Для забуривания наклонных стволов скважин турбобур с долотом должен быть поставлен в скважине под углом к вертикали. Чтобы этот угол был большим, турбобур должен быть, возможно, меньшей длины. Для этих целей применяют укороченные турбобуры-отклонители с числом ступеней 52 - 109. По конструкции они аналогичны унифицированным турбобурам и состоят из турбинной и шпиндельной секций с той разницей, что шпиндельная секция соединяется с турбинной переводником, имеющим перекос осей 1º30". Это позволяет набирать кривизну ствола скважины. Вал турбины соединяется с валом шпинделя шарнирной муфтой, компенсирующей эксцентриситет. Корпус турбины через переводник соединяется с бурильной колонной.

4.2.3. Реактивно-турбинные агрегаты

Для бурения верхних интервалов скважин диаметром 0,394 - 1,02 м применяют реактивно-турбинные агрегаты, у которых два турбобура смонтированы параллельно и жестко соединены между собой.

Для бурения скважин в горнорудной промышленности используют реактивно-турбинные агрегаты с тремя и четырьмя турбобурами, соединенными параллельно. Такими агрегатами бурят скважины диаметром от 1,26 до 5 м.

На рис. 4.5. показан реактивно-турбинный агрегат для бурения скважин диаметром 1,02 м. Этот агрегат имеет: переводник 1 , соединяющий его с бурильной колонной, траверсу 2 , скрепляющую верхние части агрегата и подводящую жидкость к двум турбобурам, турбобуры 3 , соединенные в средней части полухомутами 4 , грузы 5,6 и 7 , плиту 8 , две разрезные втулки 9 , кольца 10 , нижнюю плиту 11 и стяжки 12 . К валам турбобуров присоединены долота.

При бурении агрегат вращается бурильной колонной вокруг ее оси, а долота совершают как бы планетарное вращение вокруг осей турбобуров и оси скважины, разрушая ее забой. Нагрузка на забой создается грузами 5 , 6 и 7 . Разбуренная порода выносится циркулирующим потоком бурового раствора, подаваемого в скважину насосами.

Для бурения скважин с помощью РТБ используются обычные буровые установки.