Спецтехника

Для защиты атмосферы производится. Реферат методы и средства защиты атмосферы

Контроль загрязнения атмосферы на территории России осуществляется почти в 350 городах. Система наблюдения включает 1200 станций и охватывает почти все города с населением более 100 тыс. жителей и города с крупными промышленными предприятиями.

Средства защиты атмосферы должны ограничивать наличие вредных веществ в воздухе среды обитания человека на уровне не выше ПДК. Во всех случаях должно соблюдаться условие:

С+сф ПДК(1)

по каждому вредному веществу (сф - фоновая концентрация).

Соблюдение этого требования достигается локализацией вредных веществ в месте их образования, отводом из помещения или от оборудования и рассеиванием в атмосфере. Если при этом концентрации вредных веществ в атмосфере превышают ПДК, то применяют очистку выбросов от вредных веществ в аппаратах очистки, установленных в выпускной системе. Наиболее распространены вентиляционные, технологические и транспортные выпускные системы.

На практике реализуются следующие варианты защиты атмосферного воздуха:

  • -вывод токсичных веществ из помещений общеобменной вентиляцией;
  • -локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязненного воздуха в специальных аппаратах и его возврат в производственное или бытовое помещение, если воздух после очистки в аппарате соответствует нормативным требованиям к приточному воздуху;
  • -локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязненного воздуха в специальных аппаратах, выброс и рассеивание в атмосфере;
  • -очистка технологических газовых выбросов в специальных аппаратах, выброс и рассеивание в атмосфере; в ряде случаев перед выбросом отходящие газы разбавляют атмосферным воздухом;
  • -очистка отработавших газов энергоустановок, например, двигателей внутреннего сгорания в специальных агрегатах, и выброс в атмосферу или производственную зону (рудники, карьеры, складские помещения и т. п.)

Для соблюдения ПДК вредных веществ в атмосферном воздухе населенных мест устанавливают предельно допустимый выброс (ПДВ) вредных веществ из систем вытяжной вентиляции, различных технологических и энергетических установок.

Аппараты очистки вентиляционных и технологических выбросов в атмосферу делятся на: пылеуловители (сухие, электрические, фильтры, мокрые); туманоуловители (низкоскоростные и высокоскоростные); аппараты для улавливания паров и газов (абсорбционные, хемосорбционные, адсорбционные и нейтрализаторы); аппараты многоступенчатой очистки (уловители пыли и газов, уловители туманов и твердых примесей, многоступенчатые пылеуловители). Их работа характеризуется рядом параметров. Основными из них являются активность очистки, гидравлическое сопротивление и потребляемая мощность.

Эффективность очистки

=(свх - свых)/свх(2)

где свх и свых - массовые концентрации примесей в газе до и после аппарата.

Широкое применение для очистки газов от частиц получили сухие пылеуловители - циклоны различных типов.

Электрическая очистка (электрофильтры) - один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Этот процесс основан на ударной ионизации газа в зоне коронирующего разряда, передаче заряда ионов частицам примесей и осаждении последних на осадительных и коронирующих электродах. Для этого применяют электрофильтры.

Для высокоэффективной очистки выбросов необходимо применять аппараты многоступенчатой очистки. В этом случае очищаемые газы последовательно проходят несколько автономных аппаратов очистки или один агрегат, включающий несколько ступеней очистки.

Такие решения находят применение при высокоэффективной очистке газов от твердых примесей; при одновременной очистке от твердых и газообразных примесей; при очистке от твердых примесей и капельной жидкости и т. п. Многоступенчатую очистку широко применяют в системах очистки воздуха с его последующим возвратом в помещение.

Способы очистки газовых выбросов в атмосферу

Абсорбционный способ очистки газов, осуществляемый в установках-абсорберах, наиболее прост и дает высокую степень очистки, однако требует громоздкого оборудования и очистки поглощающей жидкости. Основан на химических реакциях между газом, например, сернистым ангидридом, и поглощающей суспензией (щелочной раствор: известняк, аммиак, известь). При этом способе на поверхность твердого пористого тела (адсорбента) осаждаются газообразные вредные примеси. Последние могут быть извлечены с помощью десорбции при нагревании водяным паром.

Способ окисления горючих углеродистых вредных веществ в воздухе заключается в сжигании в пламени и образовании СО2 и воды, способ термического окисления - в подогреве и подаче в огневую горелку.

Каталитическое окисление с использованием твердых катализаторов заключается в том, что сернистый ангидрид проходит через катализатор в виде марганцевых составов или серной кислоты.

Для очистки газов методом катализа с использованием реакций восстановления и разложения применяют восстановители (водород, аммиак, углеводороды, монооксид углерода). Нейтрализация оксидов азота NOx достигается применением метана с последующим использованием оксида алюминия для нейтрализации на втором этапе образующегося монооксида углерода.

Перспективен сорбционно-каталитический способ очистки особо токсичных веществ при температурах ниже температуры катализа.

Адсорбционно-окислительный способ также представляется перспективным. Он заключается в физической адсорбции малых количеств вредных компонентов с последующим выдуванием адсорбированного вещества специальным потоком газа в реактор термокаталитического или термического дожигания.

В крупных городах для снижения вредного влияния загрязнения воздуха на человека применяют специальные градостроительные мероприятия: зональную застройку жилых массивов, когда близко к дороге располагают низкие здания, затем - высокие и под их защитой - детские и лечебные учреждения; транспортные развязки без пересечений, озеленение.

Охрана атмосферного воздуха

Атмосферный воздух является одним из основных жизненно важных элементов окружающей среды.

Закон «О6 охране атмосферного воздуха» всесторонне охватывает проблему. Он обобщил требования, выработанные в предшествующие годы и оправдавшие себя на практике. Например, введение правил о запрещении ввода в действие любых производственных объектов (вновь созданных или реконструированных), если они в процессе эксплуатации станут источниками загрязнений или иных отрицательных воздействий на атмосферный воздух. Получили дальнейшее развитие правила о нормировании предельно допустимых концентраций загрязняющих веществ в атмосферном воздухе.

Государственным санитарным законодательством только для атмосферного воздуха были установлены ПДК для большинства химических веществ при изолированном действии и для их комбинаций.

Гигиенические нормативы - это государственное требование к руководителям предприятий. За их выполнением должны следить органы государственного санитарного надзора Министерства здравоохранения и Государственный комитет по экологии.

Большое значение для санитарной охраны атмосферного воздуха имеет выявление новых источников загрязнения воздушной среды, учет проектируемых, строящихся и реконструируемых объектов, загрязняющих атмосферу, контроль за разработкой и реализацией генеральных планов городов, поселков и промышленных узлов в части размещения промышленных предприятий и санитарно-защитных зон.

В Законе «Об охране атмосферного воздуха» предусматриваются требования об установлении нормативов предельно допустимых выбросов загрязняющих веществ в атмосферу. Такие нормативы устанавливаются для каждого стационарного источника загрязнения, для каждой модели транспортных и других передвижных средств и установок. Они определяются с таким расчетом, чтобы совокупные вредные выбросы от всех источников загрязнения в данной местности не превышали нормативов ПДК загрязняющих веществ в воздухе. Предельно допустимые выбросы устанавливаются только с учетом предельно допустимых концентраций.

Очень важны требования Закона, относящиеся к применению средств защиты растений, минеральных удобрений и других препаратов. Все законодательные меры составляют систему профилактического характера, направленную на предупреждение загрязнения воздушного бассейна.

Закон предусматривает не только контроль за выполнением его требований, но и ответственность за их нарушение. Специальная статья определяет роль общественных организаций и граждан в осуществлении мероприятий по охране воздушной среды, обязывает их активно содействовать государственным органам в этих вопросах, так как только широкое участие общественности позволит реализовать положения этого закона. Так, в нем сказано, что государство придает большое значение сохранению благоприятного состояния атмосферного воздуха, его восстановлению и улучшению для обеспечения наилучших условий жизни людей - их труда, быта, отдыха и охраны здоровья.

Предприятия или их отдельные здания и сооружения, технологические процессы которых являются источником выделения в атмосферный воздух вредных и неприятно пахнущих веществ, отделяют от жилой застройки санитарно-защитными зонами. Санитарно-защитная зона для предприятий и объектов может быть увеличена при необходимости и надлежащем обосновании не более чем в 3 раза в зависимости от следующих причин: а) эффективности предусмотренных или возможных для осуществления методов очистки выбросов в атмосферу; б) отсутствия способов очистки выбросов; в) размещения жилой застройки при необходимости с подветренной стороны по отношению к предприятию в зоне возможного загрязнения атмосферы; г) розы ветров и других неблагоприятных местных условий (например, частые штили и туманы); д) строительства новых, еще недостаточно изученных вредных в санитарном отношении производств.

Размеры санитарно-защитных зон для отдельных групп или комплексов крупных предприятий химической, нефтеперерабатывающей, металлургической, машиностроительной и других отраслей промышленности, а также тепловых электрических станций с выбросами, создающими большие концентрации различных вредных веществ в атмосферном воздухе и оказывающими особо неблагоприятное влияние на здоровье и санитарно-гигиенические условия жизни населения, устанавливают в каждом конкретном случае по совместному решению Минздрава и Госстроя России.

Для повышения эффективности санитарно-защитных зон на их территории высаживают древесно-кустарниковую и травянистую растительность, снижающую концентрацию промышленной пыли и газов. В санитарно-защитных зонах предприятий, интенсивно загрязняющих атмосферный воздух вредными для растительности газами, следует выращивать наиболее газоустойчивые деревья, кустарники и травы с учетом степени агрессивности и концентрации промышленных выбросов. Особо вредны для растительности выбросы предприятий химической промышленности (сернистый и серный ангидрид, сероводород, серная, азотная, фтористая и бромистая кислоты, хлор, фтор, аммиак и др.), черной и цветной металлургии, угольной и теплоэнергетической промышленности.

    Основные способы защиты атмосферы от промышленных загрязнений.

    Очистка технологических и вентиляционных выбросов. Очистка отходящих газов от аэрозолей.

1. Основные способы защиты атмосферы от промышленных загрязнений.

Защита окружающей среды  это комплексная проблема, требующая усилий учёных и инженеров многих специальностей. Наиболее активной формой защиты окружающей среды является:

    Создание безотходных и малоотходных технологий;

    Совершенствование технологических процессов и разработка нового оборудования с меньшим уровнем выбросов примесей и отходов в окружающую среду;

    Экологическая экспертиза всех видов производств и промыш­ленной продукции;

    Замена токсичных отходов на нетоксичные;

    Замена неутилизируемых отходов на утилизированные;

    Широкое применение дополнительных методов и средств защиты окружающей среды.

В качестве дополнительных средств защиты окружающей среды применяют:

    аппараты и системы для очистки газовых выбросов от приме­сей;

    вынесение промышленных предприятий из крупных городов в малонаселённые районы с непригодными и малопригодными для сельско­го хозяйства землями;

    оптимальное расположение промышленных предприятий с учётом топографии местности и розы ветров;

    установление санитарно-защитных зон вокруг промышленных предприятий;

    рациональную планировку городской застройки обеспечивающую оптимальные условия для человека и растений;

    организацию движения транспорта с целью уменьшения выброса токсичных веществ в зонах жилой застройки;

    организацию контроля за качеством окружающей среды.

Площадки для строительства промышленных предприятий и жилых массивов должны выбираться с учётом аэроклиматической характерис­тики и рельефа местности.

Промышленный объект должен быть расположен на ровном возвы­шенном месте, хорошо продуваемом ветрами.

Площадка жилой застройки не должна быть выше площадки предп­риятия, в противном случае преимущество высоких труб для рассеива­ния промышленных выбросов практически сводится на нет.

Взаимное расположение предприятий и населённых пунктов опре­деляется по средней розе ветров тёплого периода года. Промышленные объекты, являющиеся источниками выбросов вредных веществ в атмос­феру, располагаются за чертой населённых пунктов и с подветренной стороны от жилых массивов.

Требованиями "Санитарных норм проектирования промышленных предприятий СН  245  71" предусмотрено, что объекты, являющиеся ис­точниками выделения вредных и неприятно пахнущих веществ, следует отделить от жилой застройки санитарно-защитными зонами. Размеры этих зон устанавливают в зависимости от:

    мощности предприятия;

    условий осуществления технологического процесса;

    характера и количества выделяемых в окружающую среду вред­ных и неприятно пахнущих веществ.

Установлено пять размеров санитарно-защитных зон: для предприятий I класса  1000м, II класса  500 м, III класса  300 м, IV класса  100м, V класса  50м.

Машиностроительные предприятия по степени воздействия на ок­ружающую среду в основном относятся к IV и V классам.

Санитарно-защитная зона может быть увеличена, но не более чем в три раза по решению Главного санитарно-эпидемиологического управления Минздрава России и Госстроя России при наличии небла­гоприятных аэрологических условий для рассеивания производственных выбросов в атмосфере или при отсутствии или недостаточной эффективности очистных сооружений.

Размеры санитарно-защитной зоны могут быть уменьшены при из­менении технологии, совершенствовании технологического процесса и внедрении высокоэффективных и надёжных очистных устройств.

Санитарно-защитную зону запрещается использовать для расши­рения промышленной площадки.

Разрешается размещать объекты более низкого класса вредноcти, чем основное производство, пожарное депо, гаражи, склады, ад­министративные здания, научно-исследовательские лаборатории, сто­янки транспорта и т.д.

Санитарно-защитная зона должна быть благоустроена и озелене­на газоустойчивыми породами деревьев и кустарников. Со стороны жи­лого массива ширина зелёных насаждений должна быть не менее 50 м, а при ширине зоны до 100 м  20 м.

Для очистки газов от вредных газообразных примесей используют две группы методов - некаталитические и каталитические. Методы первой группы основаны на выведении примесей из газообразной смеси с помощью жидких абсорберов) и твердых (адсорберов) поглотителей. Методы второй группы заключаются в том, что вредные примеси вступают химическую реакцию и превращаются в безвредные вещества поверхности катализаторов. Еще более сложный и многоступенчатый процесс представляет собой очистка сточных вод.

Все известные методы и средства защиты атмосферы от химических примесей можно объединить в три группы.

В первую группу входят мероприятия, направленные на снижение мощности выбросов, т.е. уменьшение количества выбрасываемого вещества в единицу времени. Во вторую группу входят мероприятия, направленные на защиту атмосферы путем обработки и нейтрализации вредных выбросов специальными системами очистки. В третью группу входят мероприятия по нормированию выбросов как на отдельных предприятиях и устройствах, так и в регионе в целом.

Для снижения мощности выбросов химических примесей в атмосферу наиболее широко используют :

  • - замену менее экологичных видов топлива экологичными;
  • - сжигание топлива по специальной технологии;
  • - создание замкнутых производственных циклов.

Абсорбционные методы очистки отходящих газов подразделяют по следующим признакам:

  • 1) по абсорбируемому компоненту;
  • 2) по типу применяемого абсорбента;
  • 3) по характеру процесса - с циркуляцией и без циркуляции газа;
  • 4) по использованию абсорбента - с регенерацией и возвращением его в цикл (циклические) и без регенерации (не циклические);
  • 5) по использованию улавливаемых компонентов - с рекуперацией и без рекуперации;
  • 6) по типу рекуперируемого продукта;
  • 7) по организации процесса - периодические и непрерывные;
  • 8) по конструктивным типам абсорбционной аппаратуры.

Для физической абсорбции на практике применяют воду, органические растворители, не вступающие в реакцию с извлекаемым газом, и водные растворы этих веществ. При хемосорбции в качестве абсорбента используют водные растворы солей и щелочей, органические вещества и водные суспензии различных веществ.

Выбор метода очистки зависит от многих факторов; концентрации извлекаемого компонента в отходящих газах, объема и температуры газа, содержания примесей, наличия хемосорбентов, возможности использования продуктов рекуперации, требуемой степени очистки. Выбор производят на основании результатов технико-экономических расчетов.

Адсорбционные методы очистки газов используют для удаления из них газообразных и парообразных примесей. Методы основаны на поглощении примесей пористыми телами-адсорбентами. Процессы очистки проводят в периодических или непрерывных адсорберах. Достоинством методов является высокая степень очистки, а недостатком - невозможность очистки запыленных газов.

Каталитические методы очистки основаны на химических превращениях токсичных компонентов в нетоксичные на поверхности твердых катализаторов. Очистке подвергаются газы, не содержащие пыли и катализаторных ядов. Методы используются для очистки газов от оксидов азота, серы, углерода и от органических примесей. Их проводят в реакторах различной конструкции .

В рекуперационной технике наряду с другими методами для улавливания паров летучих растворителей используют методы конденсации и компримирования.

В основе метода конденсации лежит явление уменьшения давления насыщенного пара растворителя при понижении температуры. Смесь паров растворителя с воздухом предварительно охлаждают в теплообменнике, а затем конденсируют. Достоинствами метода являются простота аппаратурного оформления и эксплуатации рекуперационной установки. Однако проведение процесса очистки паровоздушных смесей методом конденсации сильно осложнено, поскольку содержание паров летучих растворителей в этих смесях обычно превышает нижний предел их взрываемости. К недостаткам метода относятся также высокие расходы холодильного агента и электроэнергии и низкий процент конденсации паров (выход) растворителей - обычно не превышает 70-90%. Метод конденсации является рентабельным лишь при содержании паров растворителя в подвергаемом очистке потоке 100 г/м 3 , что существенно ограничивает область применения установок конденсационного типа.

Метод компримирования базируется на том же явлении, что и метод конденсации, но применительно к парам растворителей, находящимся под избыточным давлением. Однако метод компримирования более сложен в аппаратурном оформлении, так как в схеме улавливания паров растворителей необходим компримирующий агрегат. Кроме того, он сохраняет все недостатки, присущие методу конденсации, и не обеспечивает возможность улавливания паров летучих растворителей при их низких концентрациях.

Термические методы (методы прямого сжигания) применяют для обезвреживания газов от легкоокисляемых токсичных, а также дурнопахнущих примесей. Методы основаны на сжигании горючих примесей в топках печей или факельных горелках. Преимуществом метода является простота аппаратуры, универсальность использования. Недостатки: дополнительный расход топлива при сжигании низкоконцентрированных газов, а также необходимость дополнительной абсорбционной или адсорбционной очистки газов после сжигания.

Следует отметить, что сложный химический состав выбросов и высокие концентрации токсичных компонентов заранее предопределяют многоступенчатые схемы очистки, представляющие собой комбинацию разных методов .

В настоящее время перечень веществ, загрязняющих атмосферу на предприятиях и в селитебной зоне широк. К антропогенным источникам загрязнений атмосферы относят газы, аэрозоли и промышленные пыли. Основной физической характеристикой примесей атмосферы является концентрация – масса вещества (мг) в единице объема воздуха при нормальных условиях. Концентрация примесей определяет физическое, химическое и токсической воздействия веществ на окружающую среду и человека и служит основным параметром при нормировании содержания примесей в атмосфере. Для оценки качества компонентов окружающей среды введены ряд критериев качества к которым относятся: предельно допустимая концентрация вещества (ПДК), предельно допустимый выброс (сброс) (ПДВ, ПДС), предельно допустимая доза (ПДД) и другие. Эти нормативы установлены для большинства веществ, которые могут оказаться в окружающей среде и которые способны оказать негативное воздействие на здоровье человека или компоненты природной среды.

Для обеспечения нормативных уровней концентраций вредных веществ в воздухе населенных мест и вблизи промышленных предприятий на практике реализуются следующие варианты защиты атмосферного воздуха:

Вывод токсичных веществ из помещений общеобменной вентиляцией;

Локализация токсичных веществ в зоне их образования с помощью местной вентиляции с последующей рециркуляцией;

Локализация токсичных веществ в зоне их образования с помощью местной вентиляции с последующей очисткой и выбросом в атмосферу;

Очистка технологических газовых выбросов в специальных аппаратах и их выброс в атмосферу;

Очистка отработавших газов энергоустановок (двигателей внутреннего сгорания) в специальных агрегатах и их выброс в атмосферу или производственную зону;

Размещение предприятий и объектов по отношению к селитебной застройке с учетом розы ветров и рельефа.

Таким образом, все средства защиты атмосферы от вредных производственных выбросов можно объединить в две группы:

1) пассивные – создание условий для рассеивания вредных примесей в атмосферном воздухе (санитарно-защитные зоны, высокие трубы);

2) активные – средства осуществляющие очистку воздуха от разнообразных примесей (пылеуловители, туманоуловители, аппараты для улавливания паров и газов, аппараты многоступенчатой очистки).

Пассивные методы обеспечения требуемых уровней безопасности атмосферного воздуха. В целях обеспечения безопасности населения и в соответствии с Федеральным Законом «О санитарно-эпидемиологическом благополучии населения» от 30.03.1999 № 52-ФЗ, вокруг объектов и производств, являющихся источниками воздействия на среду обитания и здоровье человека устанавливается специальная территория с особым режимом использования - санитарно-защитная зона (СЗЗ), размер которой обеспечивает уменьшение воздействия загрязнения на атмосферный воздух (химического, биологического, физического) до значений, установленных гигиеническими нормативами. По своему функциональному назначению санитарно-защитная зона является защитным барьером, обеспечивающим уровень безопасности населения при эксплуатации объекта в штатном режиме. Для объектов, являющихся источниками воздействия на среду обитания разрабатывается проект обоснования размера санитарно-защитной зоны.

Ориентировочный размер санитарно-защитной зоны по классификации определяется расчетами ожидаемого загрязнения атмосферного воздуха (с учетом фона) и уровнями физического воздействия на атмосферный воздух, уточненных результатами натурных исследований и измерений. Критерием для определения размера санитарно-защитной зоны является не превышение на ее внешней границе и за ее пределами ПДК (предельно допустимых концентраций) загрязняющих веществ для атмосферного воздуха населенных мест, ПДУ (предельно допустимых уровней) физического воздействия на атмосферный воздух.

В зависимости от характеристики выбросов для промышленного объекта и производства, по которым ведущим для установления санитарно-защитной зоны фактором является химическое загрязнение атмосферного воздуха, размер санитарно-защитной зоны устанавливается от границы промплощадки и/или от источника выбросов загрязняющих веществ. От границы территории промплощадки:

От организованных и неорганизованных источников при наличии технологического оборудования на открытых площадках;

В случае организации производства с источниками, рассредоточенными по территории промплощадки;

При наличии наземных и низких источников, холодных выбросов средней высоты.

От источников выбросов (рис.6.4): при наличии высоких, средних источников нагретых выбросов. По мере удаления от источника выброса, по направлению ветра условно выделяют три зоны загрязнения атмосферы:

Зоны переброса факела с относительно невысоким содержанием вредных веществ;

Зоны задымления с максимальным содержанием вредных веществ;

Зоны постепенного снижения уровня загрязнения.

Максимальные концентрации (с м ) примесей в приземной слое можно измерить с помощью приборов или рассчитать с соответствии с «Методикой расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий ОНД-86».

Рисунок 6.4 – Классификации источников загрязнения атмосферы

Максимальные концентрации прямо пропорциональны производительности источника и обратно пропорциональны квадрату его высоты над землей:

(6.1)

Где А – коэффициент, зависящий от температурной стратификации атмосферы;

М – масса вредного вещества, выбрасываемого в атмосферу в единицу времени (г/с);

F – безразмерный коэффициент, учитывающий скорость оседания вредных веществ в воздухе;

m и n – коэффициенты, учитывающие условия выхода газовоздушной смеси из устья источника выброса;

ΔΤ – разность между температурой выбрасываемой газовоздушной смеси и температурой окружающего воздуха (ºC);

Η – высота источника выброса над уровнем земли, м;

V 1 – расход воздушной смеси (м 3 /с);

Η – безразмерный коэффициент, учитывающий влияние рельефа местности.

Используя расчетные методы, можно определить величину ПДВ для обеспечения в приземном слое ПДК вредных веществ. Если же реальные выбросы превышают ПДВ, в системе выброса используют аппараты для очистки газов от примесей, т.е. применяют активные методы обеспечения требуемых уровней безопасности атмосферного воздуха .

Примеси вредных веществ могут находиться в атмосферном воздухе в трех агрегатных состояниях: жидком, твердом, газообразном. Именно агрегатным состоянием загрязнителей обусловливается выбор технических средств очистки воздуха: пылеуловители, туманоуловители, аппараты для улавливания паров и газов, аппараты многоступенчатой очистки, используемые при сложном составе выбрасываемых предприятием загрязнителей (рис. 6.5).

Многие производственные процессы сопровождаются значительным выделением пыли. Пыль – это мельчайшие твердые частицы, способные находиться в воздухе или промышленных газах длительное время во взвешенном состоянии. Виды классификаций производственной пыли приведены на рисунке 6.6. Вредность пыли зависит от ее химического состава, концентрации в воздухе и крупности частиц. В легких человека при дыхании задерживаются частицы размером от 0,2 до 7 мкм. Пыль вызывает такие заболевания, как пневмокониозы, дерматиты, экземы, коньюктивиты и др. Очистка воздуха от пыли может быть грубой, при которой задерживается пыль с размером частиц более 100 мкм, средней – с размером пылинок 10 – 100 мкм и тонкой – менее 10 мкм.

Наиболее простыми и широко распространенными от крупной не слипающейся пыли являются аппараты сухой очистки воздуха и газов. К их числу относятся разнообразные по конструкции циклоны, принцип действия которых основан на использовании центробежной силы, воздействующей на частицы пыли во вращающемся потоке воздуха. Для разделения газового потока на очищенный и загрязненный пылью, используются жалюзийные пылеотделители. Эти устройства просты. Применяются для очистки дымовых газов от крупнодисперсной пыли при температуре 450-600ºC. Ротационные пылеуловители предназначены для очистки воздуха от частиц размером более 5мкм и относятся к аппаратам центробежного действия, которые одновременно с перемешиванием воздуха очищают его от пыли.

Аппараты мокрой очистки газов (скубберы) имеют широкое применение. Они характеризуются высокой степенью эффективности очистки от мелкодисперсной пыли с


Рисунок 6.5 – Виды аппаратов для очистки воздуха от производственных выбросов


Рисунок 6.6 – Классификации производственной пыли

размером более 0.3 мкм и возможностью очистки от горячих и взрывоопасных газов. Принцип действия основан на осаждении частиц пыли на поверхности капель или пленке жидкости, в качестве которой используется либо вода (при очистке от пыли), либо химический раствор (при улавливании одновременно с пылью вредных газообразных компонентов).

Аппараты фильтрационной очистки предназначены для тонкой очистки газов за счет осаждения частиц пыли на поверхности пористых перегородок. Осаждение частиц в порах происходит в результате совокупного действия касания, диффузного, инерционного и гравитационного процессов. Фильтры классифицируются по: типу фильтровальной перегородки, конструкции фильтра и его назначения, тонкости очистки и т.д. Большинство фильтрующих установок работает в 2 режимах: фильтрации и регенерации, т.е. очистки от уловленной пыли.

Аппараты электрофильтрационной очистки предназначены для очистки объемных расходов газа от пыли и тумана (масляного). Их принцип действия основан на осаждении частиц пыли в электрическом поле. Достоинствами электрофильтров являются высокая эффективность очистки при соблюдении режимов работы, сравнительно низкие энергозатраты, а недостатками – крупные габариты и большая металлоёмкость.

Существует 2 типа паро- и газоулавливающих установок:

1) обеспечивает санитарную очистку выбросов без последующей утилизации уловленных примесей, количество которых невелико, но которые даже в малых концентрациях опасны для человека;

2) обеспечивают очистку от большого количества веществ с последующей концентрацией их и использованием в качестве исходного сырья в различных технологических процессах.

Методы очистки промышленных выбросов от газообразных и парообразных веществ по характеру протекания физико-химических процессов делят на 4 группы:

1) промывка выбросов растворителями примесей (абсорбция) - основан на поглощении вредных газообразных примесей жидкими поглотителями: водой, раствором соды, аммиака. Например, газообразные цианистые соединения абсорбируют 5% раствором железного купороса.

2) промывка растворами реагентов, химически связывающих примеси (хемосорбция) заключается в поглощении вредных веществ с твердыми или жидкими поглотителями, в результате чего образуются малолетучие или малорастворимые химические соединения. Например, мышьяково-щелочной раствор используют для очистки от сероводорода.

3) поглощение газообразных примесей твердыми телами ультрамикроскопической структурой (адсорбция) – основан на поглощении вредных примесей поверхностью твердых пористых тел – адсорбентов. Чем больше пористость адсорбента, том больше его эффективность. Адсорбентами выступают: активированный уголь, глинозем, цеолиты, сланцевая зола. Например, на АЭС сорбция радиоактивных продуктов осуществляется угольными фильтрами.

4) термическая нейтрализация отходящих газов обеспечивает окисление токсичных примесей в газовых выбросах до менее токсичных при наличии свободного кислорода и высокой температуры газов. Метод применяется при больших объёмах газа и высоких концентрациях газа. Существует 3 схемы применения:

Прямое сжигание в пламени применяется при высокой температуре отходящих газов;

Термическое окисление при температуре 600-800 ºC применяется, если отходящие газы имеют высокую температуру, но в них нет либо кислорода, либо концентрация горючих газов низка;

Каталитическое сжигание при температуре 250-450 ºC предназначен для превращения вредных примесей в горячих газах в безвредные или менее вредные с использованием катализаторов.

Процесс очистки газов от твердых и капельных примесей в различных аппаратах характеризуется несколькими параметрами:

1) Производительностью – объёмом воздуха, который способно очистить данное устройство в единицу времени (м 3 /ч, м 3 /с);

2) Общим коэффициентом очистки – отношением массы пыли, уловленной аппаратом, к массе поступившей в него пыли за единицу времени, %:

Где Ф вх, Ф вых – содержание фракции пыли в воздухе на входе и выходе пылеуловителя, %.

Эффективность пылеулавливания высокоэффективных фильтров может выражаться через коэффициент проскока ε, представляющий собой отношение концентрации пыли за фильтром к концентрации пыли перед фильтром в процентах и определяется по формуле:

(6.4)

4) Пылеемкостью , представляющей количество пыли, которое способен уловить и удержать фильтр (г, кг).

5) Гидравлическим сопротивлением пылеуловителя

6) Расходом электроэнергии на очистку воздуха (кВт·ч на 1000 м 3 /ч), воды (л/м 3), масла (кг/год) и т.д.

7) Капитальными затратами на воздухоочистительную установку (руб.)

8) Стоимостью очистки воздуха (рублей на 1000 м 3 воздуха).


Похожая информация.


Лекция 11. Коллективные средства защиты человека на производстве

Окружающий человека атмосферный воздух непрерывно подвергается загрязнению. Воздух производственного помещения загрязняется выбросами технологического оборудования или при проведении технологических процессов без локализации отходящих веществ. Удаляемый из помещения вентиляционный воздух может стать причиной загрязнения атмосферного воздуха промышленных площадок и населенных мест. Кроме того, воздух промышленных площадок и населенных мест загрязняется технологическими выбросами цехов, выбросами ТЭС, транспортных средств.

Воздух жилых помещений загрязняется продуктами сгорания природного газа и других видов топлива, испарениями растворителей, моющих средств, древесно-стружечных конструкций и т.п., а также токсичными веществами, поступающими в жилые помещения с притоком вентиляционного воздуха. В летний период при средней наружной температуре 20 0 С в жилые помещения проникает около 90% примесей наружного воздуха, в переходный период при t = 25 0 С – 40%, в зимнее время – до 30%.

Источниками загрязнения атмосферного воздуха производственных помещений являются:

1. В литейных цехах – это пыле- и газовыделения от вагранок, электродуговых и индукционных печей, участки складирования и переработки шихты (компоненты литья) и формовочных материалов, участки выбивки и очистки литья.

2. В кузнечно-прессовых цехах – пыль, оксид углерода, оксид серы и др. вредные вещества.

3. В гальванических цехах – это вредные вещества, находящиеся в виде тонкодисперсного тумана, паров и газов. Наиболее интенсивно вредные вещества выделяются в процессах кислотного и щелочного травления. При нанесении гальванических покрытий – это фтороводород и т.п.

4. При механической обработке металлов на станках – пыль, туман, масла и эмульсии.

5. На участках сварки и резки металлов – пыль, газы (фтороводород и др.).

6. На участках пайки и лужения – токсичные газы (оксид углерода, фтороводород), аэрозоли (свинец и его соединения).

7. В окрасочных цехах – токсичные вещества при обезжиривании и аэрозоли от лака и красок.

8. От работы различных энергетических установок (ДВС и др.)

Для удаления и очистки воздуха в производственных помещениях применяются различные системы очистки и локализации вредных веществ.

1. Вывод токсичных веществ из помещений общеобменной вентиляцией;

2. Локализация токсичных веществ в зоне их образования местной вентиляцией с очисткой загрязненного воздуха в специальных аппаратах и его возврат в производственное или бытовое помещение, если воздух после очистки в аппарате соответствует нормативным требованиям к приточному воздуху;


3. Локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязненного воздуха в специальных аппаратах, выброс и рассеивание в атмосфере.

Рисунок 3.

1 – источники токсичных веществ;

2 – устройства для локализации токсичных веществ (местный отсос);

3 – аппарат очистки.

4. Очистка технологических газовых выбросов в специальных аппаратах; в ряде случаев перед выбросом отходящие газы разбавляются атмосферным воздухом;

5. Отчистка отработанных газов энергоустановок (например, ДВС) в специальных агрегатах, и выброс в атмосферу или производственную зону (рудники, карьеры, складские помещения и т.д.).

В тех случаях, когда реальные выбросы превышают предельно допустимые выбросы (ПДВ) с учетом уже существующих загрязнений атмосферы или, точнее, существующих уже в атмосфере ее компонентов, необходимо в системе выброса использовать аппараты для очистки газов и примесей.

Рисунок 4.

1–источник токсичных веществ и технологических газов;

2 – аппарат очистки;

3 – труба для рассеивания выбросов;

4 – устройство (воздуходувка для подачи воздуха на разбавление выбросов).

Аппараты очистки вентиляционных и технологических выбросов в атмосферу делятся на:

Пылеуловители (сухие, электрические, фильтры мокрые);

Туманоуловители (низкоскоростные и высокоскоростные);

Аппараты для улавливания паров и газов (абсорбционные, хемосорбционные, абсорбционные и нейтролизаторы);

Аппараты многоступенчатой очистки (уловители пыли и газов, уловители туманов и твердых примесей, многоступенчатые пылеуловители).

Широкое применение для очистки газов от частиц получили сухие пылеуловители – циклоны.

Наиболее совершенным способом очистки газов от взвешенных в них частиц пыли и туманов являются электрофильтры.

Для тонкой очистки газов от частиц и капельной жидкости применяются различные фильтры.

Аппараты мокрой очистки газов имеют широкое распространение и применяются для очистки от мелкодисперсной пыли с d 2 ≥ 0,3 мкм, а также для очистки от пыли нагретых и взрывоопасных газов.

Для очистки воздуха от туманов кислот, щелочей, масел и других жидкостей используют волокнистые фильтры туманоуловители.

Метод абсорбции – очистка газовых выбросов от газов и паров – основан на поглощении последних жидкостью. Решающим условием для применения этого метода является растворимость газов и паров в воде. Это могут быть, например, технологические выбросы аммиака, хлоро- или фторо- водородов.

Работа хемосорберов основана на поглощении газов и паров жидкими или твердыми поглотителями с образованием малорастворимых и малолетучих химических соединений (газы от оксидов азота и паров кислот).

Метод абсорбции основан на способности некоторых тонкодисперсных твердых тел в качестве абсорбента (активированный глинозем, силикагель, активированный оксид алюминия и т.д.) извлекать и концентрировать на своей поверхности отдельные компоненты выбросов газовой смеси. Их применяют для отчистки воздуха от паров растворителей, эфира, ацетона, различных углеводородов и т.д. Абсорбенты нашли широкое применение в респираторах и противогазах.

Термическая нейтрализация основана на способности горючих газов и паров, входящих в состав вентиляционных и технологических выбросов, сгорать с образованием менее токсичных веществ.