Весовое оборудование, весы

Способы нанесения лакокрасочных покрытий. Технологический процесс нанесения лакокрасочных покрытий

Основными способами их нанесения являются: пневматическое распыление (без подогрева или с подогревом), безвоздушное распыление, распыление в электростатическом поле высокого напряжения и электроосаждение. Температура окрашиваемых поверхностей перед нанесением покрытий должна быть равной температуре воздуха в помещении. Наиболее распространено пневматическое распыление.

Пневматическое распыление без подогрева (рис. 3.12) применяют для нанесения почти всех ЛКМ на различные поверхности (за исключением внутренних). Материал, разведенный

Рис. 3.12.

материалов:

1,3,4 - шланги; 2 - краскораспылитель; 5 - масловлагоотделитель; 6 - бак

до вязкости 17-30 с (по вискозиметру ВЗ-246 с соплом диаметром 4 мм), при распылении дробится на частицы размером 10-60 мкм. При нанесении покрытия краскораспылитель перемещают со скоростью 300^400 мм/с параллельно окрашиваемой поверхности на расстоянии 250-300 мм от нее. Форма «факела» краски в сечении овальная, большая ось овала около 300 мм. Однако процесс сопровождается образованием вредного для здоровья работающих тумана с потерей 20^40% ЛКМ и требует применения специальных окрасочных камер со сложными устройствами для вытяжки и очистки воздуха. Распространены ручные краскораспылители ЗИЛ с подводом краски по шлангу, КРУ-1 с верхним бачком и С-512 с нижним бачком.

Пневматическое распыление с подогревом ЛКМ протекает без дополнительного применения растворителей. Нагрев уменьшает вязкость и поверхностное натяжение ЛКМ. Способ уменьшает расход растворителей на 30-40%, позволяет применение материалов с высокой исходной вязкостью, повышает укрывистость материала, уменьшает потери на его тумано- образование вследствие уменьшения содержания растворителя в ЛКМ, увеличивает глянец покрытия. Способ обеспечивает распыление битумных лаков, глифталевых, нитроцеллюлозных и перхлорвиниловых лаков и эмалей. Для подогрева ЛКМ применяют, например, установку УГО-5М во взрывобезопасном исполнении, мощность нагревателя которой 0,8 кВт, температура материала при длине шланга 4 м - 70 °С и давление 0,1-0,4 МПа, температура воздуха 50 °С и его давление 0,2- 0,4 МПа.

Применение перегретого пара с температурой около 130 °С под давлением 0,3-0,4 МПа вместо сжатого воздуха обеспечивает экономию 10-20% материалов и использование густых синтетических эмалей.

Безвоздушное распыление ЛКМ состоит в том, что ЛКМ нагревают до температуры 40-100 °С и под давлением 4-10 МПа подают к распылительному устройству. «Факел» распыления формируется за счет перепада давления при выходе ЛКМ из сопла распылителя и последующего быстрого испарения части нагретого растворителя, которое сопровождается значительным его расширением. Производительность безвоздушного распыления почти в 2 раза выше, чем воздушного.

Схема установки для безвоздушного распыления приведена на рис. 3.13. В этой установке краску из емкости 1 насосом 2 подают через нагреватель 6 и фильтр 7 к краскораспылителю 9. Температуру краски измеряют термометром 8, а давление - манометром 3. Неиспользованную часть краски направляют через клапан 4 обратно в емкость 1. После окончания работы краску из системы сливают через кран 5.

«Факел» наносимых материалов при безвоздушным распылении имеет четкие границы и защищен от окружающей среды оболочкой из паров растворителя. По сравнению с пневматическим распылением способ обеспечивает уменьшение потерь на туманообразование на 20-35% и расхода растворителя на 15-25% с сокращением времени окрашивания. Для безвоздушного распыления применяют установки УРБ-2, УРБ-3 и УРБ-150П с распыляющими устройствами 1Б, 2Б, ЗБ, 4Г и 5А

Рис. 3.13.

материалов:

1 - бачок; 2 - насос; 3 - манометр; 4 - клапан; 5 - кран; 6 - нагреватель; 7 - фильтр; 8 - термометр; 9 - краскораспылитель с шириной окрасочного «факела» от 100 до 410 мм. Расход ЛКМ 320-1000 г/мин. Распыление без нагрева производят при температуре ЛКМ 18-23 °С и давлении 10-25 МПа. Способ рекомендуют при окрашивании крупногабаритных изделий.

Производительность распыления ЛКМ повышают путем применения окрасочных роботов.

Сущность распыления в электростатическом поле высокого напряжения (рис. 3.14) заключается в переносе заряженных частиц ЛКМ в воздушной среде за счет разности потенциалов между электродами. В электростатическом поле наносят грунты, нитроэмали, пентафталевые, глифталевые, меламиноал- кидные и перхлорвиниловые эмали. Анодом служит корониру- ющее краскораспылительное устройство, а катодом - окрашиваемое изделие. Распылительные головки 7, которые приводятся во вращения посредством электродвигателя 3 и редуктора 4, распыляют краску в плоскости, перпендикулярной оси вращения. Раздробленные частицы ЛКМ попадают в электростатическое поле, имея положительный заряд, перемещаются и осаждаются на поверхности изделия. При напряжении между электродами 60-140 кВ, созданном трансформатором и кенотроном, поддерживают напряженность 2,4-6,5 кВ/см и рабочий ток силой 20-70 мА на один распылитель. Расстояние от распылителя до окрашиваемой поверхности 250-300 мм. Способ дает возможность осадить 95-98% материала, увеличить производительность труда до 2,5 раз и улучшить его санитарно-гигиенические условия. Окрашивание в электростатическом поле выполняется в стационарных камерах или с помощью передвижных установок типа УЭРЦ-1 или УЭРЦ-4.

Рис. 3.14.

1 - конвейер подвесной; 2 - камера; 3 - электродвигатель; 4 - редуктор; 5 - выпрямитель; 6 - трансформатор; 7 - распылительные головки; 8 - окрашиваемые изделия; 9 - насос шестеренчатый

Сущность электроосаждения водоразбавляемых ЛКМ основана на явлении электрофореза в жидкости и заключается в переносе заряженных частиц материала к одному из электродов (изделию) в результате приложенного напряжения. Частицы ЛКМ находятся в деминерализованной воде в виде взвеси. Способ применяют для нанесения грунтовок. В отличие от предыдущих способов нанесение покрытий электроосаждением менее токсично, а в пожарном отношении безопасно.

На неровную грунтованную поверхность с целью ее выравнивания наносят слой шпатлевки вручную шпателем или путем распыления. Этот слой сначала выравнивают шпателем, а затем обрабатывают абразивной шкуркой вручную или механически.

Двигатели рекомендуется окрашивать алюминиевой нитроцеллюлозной эмалью НЦ-273 без грунта. Задний и передний мосты, коробки передач и рулевое управление окрашивают водоразбавляемой грунтовкой ВЛМ-0143 и эмалью МЧ-123, НЦ-184 или МС-17 черного цвета. Карданные валы окрашивают грунтовкой ГФ-089 и эмалью МЧ-123 или МС-17, а пружины передней подвески и штанги амортизаторов - эмалью КЧ-190 или МС-17. Диски колес легковых автомобилей окрашивают порошковой краской П-ЭП-134. Большое распространение получили меламиноалкидные эмали горячей сушки, среди них МЛ-152 для окрашивания кузовов автомобилей и для ремонтного окрашивания техники, МЛ-1196 - для окрашивания шасси и радиаторов. Мочевинную эмаль МЧ-124 применяют для окрашивания радиаторов и бензобаков.

18-9. СПОСОБЫ НАНЕСЕНИЯ ЛАКОКРАСОЧНЫХ ПОКРЫТИЙ
Лакокрасочные материалы наносят на поверхность изделий различными методами: пневматическим распылением, распылением под высоким давлением, распылением в электрическом поле, аэрозольным распылением,. электроосаждением, струйным обливом, окунанием, наливом, валками, в барабанах, кистью и шпателем.
Наиболее эффективный метод нанесения лакокрасочного материала для конкретного электрического аппарата выбирают из требований к покрытию, габаритов и конфигурации электрического аппарата, сборочной единицы или детали, условий производства экономической целесообразности, объема производства.
Окраска пневматическим распылением. Около 70% выпускаемых лакокрасочных материалов наносят этим методом. Пневматическое распыление применяют в основном без нагрева.
Окраска распылением под высоким давлением (безвоздушное распыление). Для окраски распылением с нагревом лакокрасочные материалы нагревают до 40 - 100°С и специальным насосом подают к распылительному устройству под давлением 4 - 10 МПа. Факел распыления формируется за счет перепада давления при выходе лакокрасочного материала из сопла распылителя и последующего мгновенного испарения части нагретого растворителя. Потери лакокрасочного материала составляют 5 - 12%. Преимущества этого метода "-по сравнению с окраской пневматическим распылением следующие:
1) потери на лакокрасочные материалы сокращаются на 20 - 35%;
2) сокращается расход растворителей;
3) сокращается цикл окраски.
Указанный метод рекомендуется применять для окраски средних, крупных и особо крупных аппаратов в серийном и единичном производствах.
При окраске распылением под высоким давлением без нагрева лакокрасочный материал при 18 - 23°С подается к распылительному устройству под давлением.
Окрашивание распылением без нагрева имеет ряд преимуществ по сравнению с распылением с нагревом:
установки проще по конструкции и ниже энергозатраты.
Окраска распылением в электрическом поле высокого напряжения. Этот метод основан на переносе заряженных частиц краски в электрическом поле высокого напряжения, создаваемом между системой электродов, одним из которых является коронирующее краскораспыляющее устройство, другим - окрашиваемый электрический аппарат или его деталь. Лакокрасочный материал поступает на коронирующую кромку распылителя, где приобретает отрицательный заряд и распыляется под действием электрических сил, после чего направляется к заземленному изделию, осаждаясь на его
поверхности.
(рис. 18-11). Этот метод заключается в том, что изделие, окрашенное лакокрасочным материалом из сопл обливающего устройства, помещают в атмосферу, содержащую контролируемое количество паров органических растворителей. Выдержка нанесенного слоя лакокрасочного материала в атмосфере паров растворителей позволяет замедлить процесс улетучивания из него растворителя в начальный момент формирования покрытия. Это дает возможность избыточному количеству лакокрасочного материала стечь с изделия, а оставшемуся - равномерно распределиться по поверхности. В сравнении с окраской в электрическом поле обеспечивается лучшее качество покрытия деталей любой конфигурации.
Метод струйного облива применятся для грунтования и окрашивания изделий в серийном и массовом производствах (рис. 18-11).

Окрашивание аэрозольные распылением. Метод эффективен при ремонтных работах, а также при нанесении трафаретов и надписей и других окрасочных операциях небольшого объема. Лакокрасочные аэрозольные баллончики выпускают емкостью 0,15; 0,3; 0,5; 0,6л.

Технологические процессы получения лакокрасочных покрытий разнообразны. Это связано с функциональным назначением окрашиваемого изделия, условиями его эксплуатации, характером окрашиваемой поверхности, применяемыми методами окрашивания и формирования покрытий.

Процесс получения лакокрасочного покрытия заключается в осуществлении следующих обязательных стадий:

  • * подготовка поверхности перед окрашиванием
  • * нанесение лакокрасочного материала
  • * отверждение лакокрасочного материала

Каждая из этих стадий влияет на качество получаемого покрытия и его долговечность. Рассмотрим влияние указанных факторов на долговечность покрытий в отдельности.

Подготовка поверхности перед окрашиванием играет существенную роль в обеспечении долговечности. Многолетний опыт применения лакокрасочных покрытий в различных отраслях промышленности показывают, что их долговечность приблизительно на 80 % определяется качеством подготовки поверхности перед окрашиванием. Некачественная подготовка поверхности металла перед окрашиванием вызывает ряд нежелательных последствий, приводящих к ухудшению защитных свойств покрытий:

  • - ухудшение адгезии покрытия к подложке
  • - развитие под покрытием коррозионных процессов
  • - растрескивание и расслоение покрытий
  • - ухудшение декоративных свойств

Между долговечностью покрытий и степенью очистки поверхности существует четко проявляющаяся зависимость.

В случае механических способов подготовки поверхности ориентировочные коэффициенты повышения сроков службы систем покрытий в зависимости от подготовки поверхности могут быть представлены следующим образом:

Технологический процесс получения лакокрасочного покрытия включает операции подготовки поверхности, нанесения отдельных слоев, сушку лакокрасочных покрытий и их отделку.

Общий метод получения смол заключается во взаимодействии многоосновных органических кислот с многоатомными спиртами при высокой температуре.

Синтез лаков производится азеотропным методом, обеспечивающим высокое качество продукции при минимальных потерях сырья и минимальном количестве отходов и загрязнений, образующихся в процессе синтеза.

Объём производства установок регламентируется объемом базового аппарата синтеза от 3,2 до 32 м3.

Наиболее часто применяемая установка с объёмом реактора 6,3м3 позволяет получать около 3000 тонн 50% лака в год при 300 рабочих днях.

Эмалевой краской (или сокращенно эмалью) называют композицию из лака и пигмента. Пленкообразующими веществами в эмалевых красках являются полимеры - глифталевые, перхлорвиниловые, алкидно-стирольные, синтетические смолы, эфиры, целлюлозы.

Строительные эмали из глифталевых смол чаще всего используют для внутренних отделочных работ по штукатурке и дереву, а также для заводской отделки асбестоцементых листов, древесно-волокнистых плит.

Нитроглифталевые и пентафталевые эмали применяют для внутренних и наружных малярных работ. Перхлорвиниловые эмалевые краски водостойки: их применяют преимущественно для наружной отделки. Битумную эмалевую краску получают, вводя в битумно-масляный лак алюминиевый пигмент (алюминиевую пудру). Эти эмали стойки к действию воды, поэтому их предназначают для окраски санитарно-технического оборудования, стальных оконных рам, решеток.

Силиконовые краски наносятся кистью, распылителем и др. Некоторые из них высыхают при комнатной температуре, другие - при нагревании до 260°С. На основе кремнийорганических смол получают также эмали общего назначения. Они представляют собой суспензию пигментов и наполнителей в кремнийорганическом лаке (с добавлением растворителя).

Эмали выпускают разных цветов, их используют в качестве защитных декоративных покрытий. Лакокрасочная защита строительных конструкций привлекает сравнительной простотой выполнения покрытия, возможностью легко возобновить защиту, относительной экономичностью по сравнению с другими видами защиты (оклеечная изоляция, футеровка).

Масляные краски изготовляют на основе олиф - полимеризованных растительных масел (льняного, конопляного) или жидких алкидных смол.

Эмали представляют собой взвеси тонко измельчённых пигментов в растворах лаков - плёнкообразующих веществ. Так называемые эмульсионные краски производят на основе водных дисперсий полимеров, например поливинилацетата, полиакрилатов, а порошковые краски-- на основе сухих полимеров (полиэтилена, поливинилхлорида и др.), образующих при нагреве до определённой температуры прочные плёночные покрытия.

Для получения порошковых красок применяют три разных способа: сухое смешение дисперсных компонентов; смешение в расплаве с последующим измельчением плава; диспергирование пигментов в растворе пленкообразователей с последующей отгонкой растворителя из жидкого материала. Сухое смешение применяется при пигментировании предварительно измельченных термопластичных полимеров. При использовании этого способа нерасслаивающиеся стабильные композиции получаются только в том случае, если при смешении происходит дезагрегация зерен исходных материалов и образование новых смешанных агрегатов с большой контактной поверхностью между разнородными частицами. При сухом смешивании без измельчения зерен полимеров частицы пигментов и наполнителей только "опудривают" поверхность зерен полимеров снаружи. Полярные полимеры (поливинилбутираль, полиамиды, эфиры целлюлозы и др.) имеют хорошую адгезию к дисперсным пигментам и наполнителям. Неполярные полимеры (полиолефины, фторопласты и др.) значительно труднее смешиваются с наполнителями. Жидкие компоненты - пластификаторы, отвердители, модификаторы как правило предварительно перетирают с пигментами и наполнителями, а затем смешивают с полимерами в шаровых, вибрационных и др. мельницах. Сухое смешение - наиболее простой способ, осуществляемый в различных смесителях, но получаемый при этом конечный продукт имеет недостаточно равномерное распределение пигментов.

Смешение в расплавах производится при температуре несколько выше температуры текучести пленкообразователя. При этом пигментные частицы смачиваются и проникают внутрь частиц пленкообразователя, создавая более однородные макро- и микроструктуры еще до стадии пленкообразования. Смешение компонентов в расплавах возможно для любых пленкообразователей, но наибольшее применение находит для эпоксидных, полиэфирных, акрилатных, уретановых олигомеров, низкомолекулярного поливонилхлорида и др.

Появление порошковых материалов - закономерный результат эволюции лакокрасочной индустрии. Лакокрасочные материалы с высокой долей нелетучих веществ, во-первых, более экономичны в плане нанесения, а во-вторых, их широкое использование позволяет если не оздоровить, то хотя бы улучшить экологическую обстановку.

Отдельную группу лакокрасочных материалов представляют собой Водоразбавляемые красочные составы, которые приготовляют с использованием в качестве связующих неорганических вяжущих веществ или клеев. Такие составы перед нанесение разбавляются водой.

Известковые краски изготовляют из извести, щелочестойких пигментов и небольших добавок, например олифы для придания пленке небольшого блеска. Образование красочной пленки происходит благодаря карбонизации извести. Известковые краски не обладают высокой прочностью и долговечностью, но они дешевы и подготовка поверхности для их нанесения проста. Применяют известковые краски в основном для окраски фасадов: кирпичных, бетонных, оштукатуренных.

Цементные краски состоят из цемента, щелочестойких пигментов, извести, хлористого кальция и гидрофобизующих добавок. Образование пленки происходит вследствие реакций гидратации цемента. Известь и хлористый кальций повышают водоудерживающую способность краски, что необходимо для приобретения прочности красочной пленки. Применяют цементные краски для окраски по влажным пористым поверхностям: бетонным, штукатурным, кирпичным.

Силикатные краски состоят из растворимого калийного стекла, минеральных щелочестойких пигментов и кремнеземистых добавок (трепела, диатомита, тонкомолотого песка). Образование красочной пленки происходит в результате гидролиза силиката калия и образования нерастворимых силикатов кальция и водного кремнезема. Наиболее атмосферостойкие покрытия получают при нанесении силикатной краски на основания, содержащие свободную известь (поверхность свежего бетона, цементной или известковой штукатурки). При окраске по дереву силикатные краски служат для защиты древесины от возгорания.

Клеевые краски представляют собой суспензии пигментов и мела в водном коллоидном растворе клея. Приготовляют клеевые краски на месте производства работ. Красочная пленка в клеевых красках образуется по мере удаления из них воды, вследствие ее испарения и впитывания окрашиваемым основанием. Клеевые краски не прочны и не водостойки, поэтому их применяют лишь для внутренней окраски сухих помещений.

Казеиновые клеевые краски выпускают в виде сухих смесей, состоящих из казеина, пигментов, щелочи, извести и антисептика. Для получения состава требуемой консистенции сухую краску на месте производства работ разбавляют водой. Казеиновые клеевые составы более водостойки, чем составы на животных клеях. Их применяют для внутренней и наружной окраски.

Силиконовые краски. Силиконоэмульсионные краски сочетают в себе лучшие свойства акриловых и силикатных красок: паропроницаемость у них почти так же высока, как у силикатных, следовательно, они тоже подходят для зданий с плохой гидроизоляцией фундаментов, и к тому же они не поддерживают развитие микроорганизмов. Связующим в этих материалах является кремнийорганическая силиконовая смола. Разводят их водой. После высыхания краски поверхность выглядит как натуральный природный материал. Краска образует водонепроницаемую пленку, структура пленки обладает способностью к самоочищению так называемый эффект лотоса. Они совместимы как с минеральными, так и с акрилатными красками, допускают перекрашивание старых силикатных красок.

Модифицированные материалы. Они представляют собой усовершенствованный вариант акриловых систем, в состав которых добавлены силиконовые смолы или силоксан (промежуточный продукт при производстве силиконовых смол). Силикон или силоксанмодифицированные покрытия обладают хорошей адгезией, лучше пропускают углекислый газ и отталкивают воду, обеспечивают защиту от УФ-излучения, обладают большей эластичностью, а значит, и долговечностью. Их можно наносить практически на все имеющиеся в строительной практике минеральные подложки.

Некоторые водоразбавляемые краски выпускаются как в матовом, так и в полуматовом (а иногда и в полуглянцевом) исполнении. Как правило, стойкость матовой краски несколько ниже, чем полуматовой, а тем более полуглянцевой краски той же марки.

Водно-дисперсионные краски, предназначенные для использования во влажных и сырых помещениях, должны обладать повышенной водостойкостью и фунгицидными свойствами. Испытание на водостойкость проводят тем же методом, что и испытания на стойкость к мытью, с той лишь разницей, что окрашенная поверхность предварительно подвергается воздействию влаги от мокрой ткани, соприкасающейся с тестируемой поверхностью в течение определенного времени. Способность материалов этой группы препятствовать возникновению плесени обеспечивается присутствием в составе красок фунгицидных добавок. Среди всех водоразбавляемых красок водостойкие составы отличаются наибольшей стойкостью к мытью и истиранию (более 10 тыс. проходов щеткой).

Ежегодно в мире производится около 10 млн. тонн лакокрасочных материалов. Этого количества хватило бы для того, чтобы покрыть Землю по экватору красочным поясом шириной 2,5 км. О взрывчатых свойствах нитроцеллюлозы известно практически каждому школьнику. Но не все знают, что её применение началось благодаря перепроизводству взрывчатых веществ после Первой мировой войны в автомобильной промышленности. При этом успешно была решена проблема утилизации опасного вещества (нитроцеллюлозы) и начато производство лакокрасочных материалов на основе нитроцеллюлозы для окраски автомобильных кузовов.

Наибольшее распространение получили два способа нанесения жидкостных лакокрасочных покрытий - пневматическое распыление и нанесение в электростатическом поле.

Пневматическое распыление является одним из наиболее распространенных способов окраски деталей СП. Этим способом можно наносить материалы на основе почти всех видов пленкообразователей на изделия всех групп сложности. Производительность окраски пневмораспылением достаточно высокая. Качество покрытия удовлетворительное. Недостатками этого способа являются значительные потери лакокрасочных материалов на туманообразование (до 50%); высокая токсичность и вследствие этого необходимость применения окрасочных камер с устройствами вытяжки и очистки загрязненного воздуха, пожароопасность; значительный расход растворителей для разведения лакокрасочных материалов до рабочей вязкости.

Качество покрытия при этом способе в значительной степени определяется степенью очистки сжатого воздуха, поскольку наличие влаги и масел вызывает брак. Поэтому воздух, поступающей от пневмосмеси, подвергается очистке в специальных маслоотделителях. Для поддержания заданной вязкости лакокрасочного материала используются различные растворители

Для повышения эффективности окраски способом пневпораспыления, экономии растворителей (до 40%) и сокращения числа наносимых слоев применяется нанесение лакокрасочных материалов с подогревом.

Безвоздушное распыление . Сущность способа заключается в том, что распыление лакокрасочного материала происходит без сжатого воздуха под воздействием высокого гидростатического давления, создаваемого во внутренней полости распыляющего устройства и вытесняющего материал через отверстие сопла. Безвоздушное распыление осуществляется следующим образом. Краску подогревают в замкнутой системе до 70-100°С и под давлением 4-6 МПа подают к распылителю. Поскольку при выходе краски из сопла в атмосферу происходит перепад давлений от 4-6 до 0,1 МПа, то при этом имеет место резкое увеличение объема и дробление частиц краски. Так как факел распыляемой краски защищен от окружающей среды оболочкой паров растворителя, туман не образуется.

Установка безвоздушного распыления работает следующим образом. Из бачка 1 краска насосом 4 через нагреватель 5 подается к распылителю 6. Неиспользованная часть краски сбрасывается под давлением через систему шлангов 2 и обратный клапан 3 в бачок, Таким образом создается непрерывная циркуляция краски, необходимая для поддержания постоянной температуры и давления на распылителе.

Данный способ имеет существенные преимущества перед пневматическим распылением: уменьшение расхода лакокрасочных материалов на 20-25% благодаря уменьшению потерь на туманообразование; снижение затрат на эксплуатацию распылительных камер из-за их более легкой очистки; улучшение условий труда и др.

Окраска в электростатическом поле является основным способом нанесения лакокрасочных покрытий на детали СП. Способ основан на переносе заряженных частиц эмали в электростатическом поле высокого напряжения, создаваемом между системой коронирующих электродов-распылителей и окрашиваемыми изделиями.

Частицы краски, приобретая заряд, движутся вдоль силовых линий электрического поля и осаждаются на поверхности детали. Обычно коронирующий электрод подключают к отрицательному полюсу (окрашивающий материал при этом получает отрицательный заряд), а изделие - к положительному полюсу источника высокого напряжения. Несущий изделия конвейер, как правило, заземляют.

Схема электростатических распылителей приведена на рисунке. На движущийся заземленный конвейер 3 навешиваются детали 2, которые, проходя между чашками-краскораспылителями 7, подвергаются окрашиванию. Краска к чашкам-краскораспылителям подается из бачка 4. Для увеличения облака краски, а следовательно, и площади окраски чашки-краскораспылители вращаются вокруг своей оси, разбрасывая частицы краски под действием центробежной силы. Обычно в окрасочной камере находится по две чашки-краскораспылители с каждой стороны окрашиваемого изделия. Межэлектродное расстояние 200-300 мм. Напряжение, создаваемое на чашках-краскораспылителях, до 80 кВ. Равномерное движение конвейера обеспечивает равномерность нанесения покрытия. Преимуществами способа является высокое качество покрытия, низкий расход материала, недостатками – высокая стоимость оборудования.

Окунание (погружение) в ванну является весьма производительным и простым по технике выполнения. Окунание широко применяется при лакировании изделий. Этот способ может быть применен только к изделиям обтекаемой формы, т.е. таким, на которых при выгрузке из ванны не задерживалась бы краска. При окраске окунанием изделия погружают в ванну на определенное время, затем вынимают, дают возможность краске стечь и направляют на сушку.

Преимуществами этого способа являются его простота и отсутствие необходимости применения дорогостоящего оборудования. Недостатками являются значительное испарение материала, натеки краски при сливе и неравномерность покрытия. Изменяя состав и вязкость краски, можно получать покрытия толщиной 30-40 мкм и более.

Вязкость краски влияет не только на толщину покрытия, но и на скорость ее стекания с окрашенной поверхности, уменьшая толщину. С увеличением скорости поднятия изделия из ванны толщина пленки увеличивается.

Для улучшения качества покрытия применяются специальные приемы. Такие, как установка над лотком стекания краски металлической сетки, заряженной положительно. Конвейер получает отрицательный заряд, и между изделиями и сеткой образуется электрическое поле, стягивающее отрицательно заряженные капли краски с изделия. Применяется также технология окраски окунанием с выдержкой в парах растворителя. Во время выдержки происходит выравнивание толщины покрытия благодаря более интенсивному удалению излишков краски в нижней зоне изделия.

Струйный облив. Этим способом окрашиваются изделия, к которым предъявляются невысокие требования к качеству отделки. Принципиально окраска обливом мало отличается от окраски окунанием. Толщина покрытия может достигать 60 мкм.

Сущность этого способа заключается в том, что изделия на конвейере 2 поступают в окрасочную камеру 3, где их обливают краской из специальных сопел-форсунок 4. Избыток краски стекает по лотку в резервуар, откуда насосом 1 через фильтры снова подается к форсункам. Система вентиляции, включающая в себя патрубки 6 и вентилятор 5, обеспечивает непрерывную циркуляцию паров растворителя в тоннеле 7. Пары отсасываются из окрасочной камеры 3, а также из начала зоны стекания в тоннеле и возвращаются в верхнюю часть конца туннеля. Излишки паров сверх допускаемой концентрации выбрасываются в атмосферу. Концентрация паров регулируется специальным автоматическим дросселем-клапаном. Входной и выходной тамбуры имеют воздушные завесы с тем, чтобы предотвратить попадание паров растворителя в помещение цеха.

К преимуществам струйного облива относятся: возможность одновременного окрашивания изделий разной конфигурации, относительно высокое качество покрытия, отсутствие громоздкого оборудования и незначительная потребность в производственных площадях, высокая производительность и полная автоматизация процесса; возможно получение утолщенного до 50 мкм слоя покрытия, что позволяет избежать многослойного окрашивания с применением пневмораспылителей.

К недостаткам следует отнести: значительные потери растворителя из-за многократной циркуляции лакокрасочного материала, сложность замены цвета лакокрасочного материала, необходимость частой очистки конвейера из-за обрастания краской.

Окраска электроосаждением (электрофорез) - весьма перспективный способ получения покрытий водорастворимыми эмалями. Сущность этого способа заключается в осаждении пленкообразующего материала из водного раствора на изделие с помощью постоянного электрического тока.

Изделия подвешиваются на конвейер 4 и поступают в ванну 1, изготовленную из нержавеющей стали и являющуюся отрицательно заряженным электродом - катодом. Иногда для улучшения качества покрытия в ванну вводят дополнительные катоды (угольные или стальные стержни) и аноды - в виде сетки 3, а также создают принудительное перемешивание краски с помощью насоса 5. Конвейер и подвешенные на нем изделия имеют положительный заряд (анод), создаваемый генератором постоянного тока. В ванне создается электрическое поле, под действием которого частицы краски 2 устремляются к изделию и осаждаются на нем. В начале процесса электроосаждения окрашиваются участки поверхности, на которых градиент напряженности силового электрического поля максимален - кромки, выступы и т.д. По мере того как эти участки покрываются слоем краски, возрастает изолирующее действие нанесенного слоя и начинают прокрашиваться другие части поверхности изделия. В результате на изделии образуется плотная беспористая пленка покрытия одинаковой толщины. Установлено, что при электрофорезе протекают процессы осмоса, при этом вода вытесняется из осадка, в результате чего частицы краски уплотняются и прочно прилипают к поверхности детали.

Толщина получаемого при этом покрытия 15-30 мкм. Лучшие результаты дает окраска стальных изделий, несколько хуже - алюминиевых. Плохо окрашивается цинк. После осаждения покрытия изделия промывают водой и подвергают сушке с предварительной выдержкой окрашенных изделий на воздухе в течение 20-25 мин.

Технологический процесс окраски включает следующие операции: подготовку поверхности под окраску, грунтование, шпатлевание, шлифование, окраску, сушку, контроль качества покрытия.

Для деталей тракторов и комбайнов, испытывающих в процессе эксплуатации сильные вибрации, шпатлевание не применяют, так как шпатлевочные слои разрушаются и отслаиваются.

Грунтование – одна из наиболее ответственных операций, которая создает прочное сцепление между окрашиваемой поверхностью и последующими лакокрасочными слоями, а также обеспечивает защитную способность покрытия. Грунтуют поверхность сразу же после ее подготовки. Грунтовку наносят кистью, краскораспылителем или другими способами. При окраске оборудования, эксплуатируемого в условиях повышенной влажности или в атмосферных условиях, грунтование рекомендуется производить кистью для удаления пленки воды (если она имеется на поверхности) в процессе растушевывания краски. Грунт наносят ровным слоем толщиной 15...20 мкм. При глянцевой поверхности грунт нужно слегка зачистить мелкой наждачной бумагой (шкуркой).

При выборе грунтовок учитывают их назначение, физико-малярные характеристики, совместимость грунтовок с защищаемой поверхностью, шпатлевкой и эмалями.

Шпатлевание применяется для выравнивания загрунтованной поверхности. Шпатлевку следует наносить слоем не более 0,5 мм, в противном случае толстые слои шпатлевки теряют эластичность и при эксплуатации могут растрескиваться, в результате понижаются защитные свойства покрытия. Общая толщина слоя шпатлевки может быть 1…1,5 мм. На загрунтованную поверхность наносят вначале местную шпатлевку, а затем сплошную. Каждый слой шпатлевки хорошо высушивают. Число слоев не должно быть больше трех. В случае применения большего количества слоев между ними наносят слой грунтовки.

Шлифование . Шероховатую зашпатлеванную поверхность после высыхания шлифуют, чтобы сгладить неровности. При шлифовании под воздействием абразивных зерен обрабатываемая поверхность становится матовой. Шлифование может быть сухим и с применением охлаждающей жидкости. При шлифовании покрытии на основе масляно-лаковых и алкидных лакокрасочных материалов в качестве охлаждающей жидкости применяется вода; на основе перхлорвиниловых, эпоксидных и нитроцеллюлозных материалов – вода или уайт-спирит.

Для шлифования покрытия применяется шкурка на бумажной или тканевой основе, зернистость которой в зависимости от вида обрабатываемого покрытия приведена в табл. 16.

Таблица 16.

Зернистость шкурок для шлифования покрытий

Окраска . На загрунтованную и отшлифованную поверхность наносят один или два слоя эмали. Окрашенная поверхность должна быть ровной и блестящей. Не допускается просвечивание грунтовки или шпатлевки, подтеков, сорности и повреждений слоя.

Окраску машин делят на капитальную, ремонтную и профилактическую.

Ремонтную и профилактическую окраску проводят без разборки. Профилактическую окраску выполняют при мелких повреждениях перед постановкой на хранение, ремонтную – при повреждениях лакокрасочного материала до 50 % от общей поверхности; капитальную – при разрушении более 50 % защищаемой поверхности. При капитальном ремонте машины разбирают на узлы и детали. При выборе лакокрасочных материалов для окраски руководствуются требованиями ГОСТ 5282-75.

Сушка. Для получения твердой пленки лакокрасочное покрытие должно хорошо просохнуть. В процессе сушки вначале интенсивно испаряется растворитель или разбавитель, а затем формируется пленка с образованием сложных молекул.

Повышенная температура сушки сокращает длительность процесса и повышает качество покрытия. Температура сушки определяется свойствами лакокрасочных материалов. Применяют естественную, конвективную, терморадиационную сушку лакокрасочных материалов.

Продолжительность естественной сушки – 24…48 ч, при этом не все лакокрасочные материалы переходят в необратимое твердое состояние. Конвективная сушка наиболее распространена, но недостаточно эффективна. Терморадиационная сушка (облучение инфракрасными лучами) наиболее совершенна, отличается сокращением продолжительности процесса, простотой и легкостью регулировки.

Контролируют качество покрытия визуально при нормальном дневном или искусственном освещении.

Внешний вид лакокрасочных покрытий комбайнов для уборки зерновых колосовых культур должен соответствовать III классу, остальных сельскохозяйственных машин – IV классу.

Цвет покрытий сравнивают с утвержденными цветовыми эталонами или с эталонными образцами.

Толщину покрытий определяют при помощи толщиномеров ИТП-1 на поверхности изделий или образцах-свидетелях. Для этой цели применяют также микрометры КИ-025, приборы типа 636 (от 10 до 1000 мкм), приборы ТПН-IV, ТЛКП и др.

Толщину пленки можно определить по расходу лакокрасочного материала (МРТУ 6-10-699-67, МИ-1). Этот способ применяется в тех случаях, когда невозможно измерить толщину пленки другими методами.

Адгезию пленки определяют по ГОСТ 15140-78 методом отслаивания (количественный метод), а также путем решетчатых и параллельных надрезов – качественный метод.

При правильном выполнений технологических операций восстановления лакокрасочных покрытий долговечность их должна соответствовать сроку службы машин до капитального ремонта при условии соблюдения ГОСТ 7751-85 (Техника, используемая в сельском хозяйстве. Правила хранения.) и инструкции по эксплуатации машин.

Лакокрасочные материалы в условиях ремонтного производства можно наносить пневматическим и безвоздушным распылением в электрическом поле высокого напряжения, кистью, ручными валиками и т.д.

Пневматическое распыление. Методом пневматического распыления можно наносить практически все выпускаемые промышленностью эмали, краски, лаки, грунтовки, в том числе быстросохнущие и с малым сроком годности на изделия простой и сложной конфигурации, различных габаритных размеров и назначения.

Основные преимущества метода пневматического распыления:

1) простота и надежность в обслуживании окрасочных установок;

2) получение покрытий хорошего качества на деталях сложной конфигурации различных размеров;

3) применение этого метода в различных производственных условиях при наличии источника сжатого воздуха с давлением 0,2...0,6 МПа и системы вытяжной вентиляции.

К недостаткам метода относятся:

1) большие потери лакокрасочного материала, составляющие от 25 до 50 %;

2) неудовлетворительные санитарно-гигиенические условия труда;

3) необходимость мощной системы вытяжной вентиляции и очистных устройств;

4) большой расход растворителей для разведения лакокрасочных материалов до рабочей вязкости.

Метод позволяет наносить быстросохнущие лакокрасочные материалы (нитролаки, нитроэмали). При безвоздушном распылении краска распыляется в струе сжатого воздуха, образуя туман, который переносится на окрашиваемую поверхность. Производительность – 30…40 м 2 /ч.

Безвоздушное распыление . Сущность метода – распыление лакокрасочного материала под воздействием высокого гидравлического давления, создаваемого насосом, по внутренней полости распыляющего устройства и вытеснение лакокрасочного материала через отверстие сопла. При этом легколетучая часть растворителя интенсивно испаряется, что сопровождается увеличением объема краски и ее дополнительным диспергированием. В основе метода лежит известное в гидравлике явление дробления жидкости при истечении через отверстие со скоростью, превышающей критическую, ниже которой не происходит дробление. Необходимая критическая скорость истечения при безвоздушном распылении достигается подачей лакокрасочного материала к соплу распылителя под высоким давлением (4…10 МПа). Одной из главных особенностей этого метода является окрасочный факел с четкими границами, практически одинаковой плотности, равномерный по всему сечению с незначительным туманообразованием.

Преимущества безвоздушного распыления перед пневматическим:

1) экономия до 20 % лакокрасочных материалов;

2) экономия растворителей в результате применения более вязких лакокрасочных материалов;

3) уменьшение трудоемкости работ в связи с получением утолщенных слоев покрытия;

4) снижение затрат на эксплуатацию распылительных камер в результате их более легкой очистки и возможности использовать менее мощную вентиляцию;

5) улучшение условий труда.

К недостаткам метода относятся:

1) трудность применения метода для окраски деталей сложной конфигурации;

2) метод нельзя применять для лакокрасочных материалов, которые нельзя нагревать, которые содержат легко выпадающие в осадок пигменты и наполнители; при окраске изделий минимальным факелом и при получении высокодекоративных покрытий.

Электростатическое распыление. Сущность метода заключаете в том, что частицы краски, попадая в зону электрического поля, приобретают заряд и осаждаются на заземленной поверхности, имеющей противоположный заряд. Чтобы обеспечить подвижность заряженных частиц краски, требуется высокое напряжение электрополя (70…120 кВ), которое создается между отрицательным заряженным коронирующим электродом и заземленным конвейером с окрашиваемыми деталями. В качестве коронирующего электрода используют медную сетку или приспособления для подачи краски.

Метод имеет следующие преимущества:

1) сокращение расхода лакокрасочных материалов на 30...70 % по сравнению с пневматическим распылением;

2) сокращение затрат на оборудование вентиляционных устройств;

3) возможность комплексной механизации и автоматизации процесса;

4) повышение культуры производства и улучшение санитарно-гигиенических условий труда.

К недостаткам метода относятся:

1) неполное прокрашивание изделий сложной конфигурации, имеющих глубокие впадины, сочетания сложных сопряжений и внутренних поверхностей;

2) лакокрасочный материал должен иметь удельное объемное электрической сопротивление 10…107 Ом см;

3) необходимость высококвалифицированного обслуживания оборудования.